混合动力地面车辆的能量管理策略:一个动态规划解决方案

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Matteo Acquarone, Gabriele Pozzato, Corey James, Simona Onori
{"title":"混合动力地面车辆的能量管理策略:一个动态规划解决方案","authors":"Matteo Acquarone, Gabriele Pozzato, Corey James, Simona Onori","doi":"10.1115/1.4063610","DOIUrl":null,"url":null,"abstract":"Abstract In this work, exergy management strategies (ExMSs) for hybrid electric ground vehicles (HEVs) are developed. The main advantage of using the exergetic framework is the possibility of pursuing unconventional optimization goals that are inaccessible to the standard energy management strategy (EMS). For instance, in military applications, the critical goal of preventing thermal imaging detection from adversary units does not seem achievable with the conventional EMS. On the other hand, the exergy-based framework can be adopted to reduce the vehicle thermal emissions through the minimization of exergy terms related to heat exchange. Moreover, the overall efficiency of the vehicle can be increased through the minimization of the exergy destruction, a quantity that is not quantifiable by energy-based methods. In this paper, the exergetic model of a series hybrid electric military truck and the exergetic model of the electric induction generator are developed and used to formulate and solve two novel exergy management strategies aiming to minimize genset exergy destruction and thermal emissions, respectively. The optimal solutions to the EMS and ExMSs control problems are obtained through Dynamic Programming over two driving missions. The results show that ExMS for the minimization of exergy destruction achieves similar results to the standard EMS, while the ExMS for the minimization of thermal emissions obtains significantly lower thermal emissions compared to the EMS, effectively reducing the thermal imaging detection risk.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exergy Management Strategies For Hybrid Electric Ground Vehicles: A Dynamic Programming Solution\",\"authors\":\"Matteo Acquarone, Gabriele Pozzato, Corey James, Simona Onori\",\"doi\":\"10.1115/1.4063610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, exergy management strategies (ExMSs) for hybrid electric ground vehicles (HEVs) are developed. The main advantage of using the exergetic framework is the possibility of pursuing unconventional optimization goals that are inaccessible to the standard energy management strategy (EMS). For instance, in military applications, the critical goal of preventing thermal imaging detection from adversary units does not seem achievable with the conventional EMS. On the other hand, the exergy-based framework can be adopted to reduce the vehicle thermal emissions through the minimization of exergy terms related to heat exchange. Moreover, the overall efficiency of the vehicle can be increased through the minimization of the exergy destruction, a quantity that is not quantifiable by energy-based methods. In this paper, the exergetic model of a series hybrid electric military truck and the exergetic model of the electric induction generator are developed and used to formulate and solve two novel exergy management strategies aiming to minimize genset exergy destruction and thermal emissions, respectively. The optimal solutions to the EMS and ExMSs control problems are obtained through Dynamic Programming over two driving missions. The results show that ExMS for the minimization of exergy destruction achieves similar results to the standard EMS, while the ExMS for the minimization of thermal emissions obtains significantly lower thermal emissions compared to the EMS, effectively reducing the thermal imaging detection risk.\",\"PeriodicalId\":54846,\"journal\":{\"name\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063610\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063610","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了混合动力地面车辆(hev)的能源管理策略(exms)。使用ergerggetic框架的主要优点是可以实现标准能源管理策略(EMS)无法实现的非常规优化目标。例如,在军事应用中,防止敌方单位的热成像探测的关键目标似乎无法用传统的EMS实现。另一方面,可以采用基于火用的框架,通过最小化与热交换相关的火用项来减少车辆热排放。此外,车辆的整体效率可以通过最小化火能破坏来提高,这是一个无法通过基于能量的方法量化的量。本文建立了串联混合动力军用卡车的火用模型和电磁感应发电机的火用模型,分别制定和求解了以机组火用破坏最小和热排放最小为目标的两种新型火用管理策略。通过对两个驾驶任务的动态规划,得到了EMS和exms控制问题的最优解。结果表明,最小化火能破坏的ExMS达到了与标准EMS相似的结果,而最小化热排放的ExMS获得的热排放明显低于EMS,有效降低了热成像检测风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exergy Management Strategies For Hybrid Electric Ground Vehicles: A Dynamic Programming Solution
Abstract In this work, exergy management strategies (ExMSs) for hybrid electric ground vehicles (HEVs) are developed. The main advantage of using the exergetic framework is the possibility of pursuing unconventional optimization goals that are inaccessible to the standard energy management strategy (EMS). For instance, in military applications, the critical goal of preventing thermal imaging detection from adversary units does not seem achievable with the conventional EMS. On the other hand, the exergy-based framework can be adopted to reduce the vehicle thermal emissions through the minimization of exergy terms related to heat exchange. Moreover, the overall efficiency of the vehicle can be increased through the minimization of the exergy destruction, a quantity that is not quantifiable by energy-based methods. In this paper, the exergetic model of a series hybrid electric military truck and the exergetic model of the electric induction generator are developed and used to formulate and solve two novel exergy management strategies aiming to minimize genset exergy destruction and thermal emissions, respectively. The optimal solutions to the EMS and ExMSs control problems are obtained through Dynamic Programming over two driving missions. The results show that ExMS for the minimization of exergy destruction achieves similar results to the standard EMS, while the ExMS for the minimization of thermal emissions obtains significantly lower thermal emissions compared to the EMS, effectively reducing the thermal imaging detection risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信