Josep M. Miret, Daniel Sadornil, Juan Tena, Javier Valera
{"title":"有限域上椭圆曲线除法多项式的因式分解模式注记","authors":"Josep M. Miret, Daniel Sadornil, Juan Tena, Javier Valera","doi":"10.3792/pjaa.99.011","DOIUrl":null,"url":null,"abstract":"Let $E$ be an elliptic curve defined over a finite field $\\mathbf{F}_{q}$, $q = p^{d}$, $p > 3$, and a prime number $\\ell > 3$ such that $q \\equiv 1 \\pmod{\\ell}$ and $\\ell \\mid \\# E(\\mathbf{F}_{q})$. In this paper we study the possible factorisation patterns over $\\mathbf{F}_{q}[x]$ of the $\\ell^{k}$-division polynomials associated to $E$ with $k \\geq 2$, extending the work of Verdure [6] for $k=1$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on factorisation patterns of division polynomials of elliptic curves over finite fields\",\"authors\":\"Josep M. Miret, Daniel Sadornil, Juan Tena, Javier Valera\",\"doi\":\"10.3792/pjaa.99.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $E$ be an elliptic curve defined over a finite field $\\\\mathbf{F}_{q}$, $q = p^{d}$, $p > 3$, and a prime number $\\\\ell > 3$ such that $q \\\\equiv 1 \\\\pmod{\\\\ell}$ and $\\\\ell \\\\mid \\\\# E(\\\\mathbf{F}_{q})$. In this paper we study the possible factorisation patterns over $\\\\mathbf{F}_{q}[x]$ of the $\\\\ell^{k}$-division polynomials associated to $E$ with $k \\\\geq 2$, extending the work of Verdure [6] for $k=1$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.99.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3792/pjaa.99.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A note on factorisation patterns of division polynomials of elliptic curves over finite fields
Let $E$ be an elliptic curve defined over a finite field $\mathbf{F}_{q}$, $q = p^{d}$, $p > 3$, and a prime number $\ell > 3$ such that $q \equiv 1 \pmod{\ell}$ and $\ell \mid \# E(\mathbf{F}_{q})$. In this paper we study the possible factorisation patterns over $\mathbf{F}_{q}[x]$ of the $\ell^{k}$-division polynomials associated to $E$ with $k \geq 2$, extending the work of Verdure [6] for $k=1$.