有限域上椭圆曲线除法多项式的因式分解模式注记

Pub Date : 2023-10-01 DOI:10.3792/pjaa.99.011
Josep M. Miret, Daniel Sadornil, Juan Tena, Javier Valera
{"title":"有限域上椭圆曲线除法多项式的因式分解模式注记","authors":"Josep M. Miret, Daniel Sadornil, Juan Tena, Javier Valera","doi":"10.3792/pjaa.99.011","DOIUrl":null,"url":null,"abstract":"Let $E$ be an elliptic curve defined over a finite field $\\mathbf{F}_{q}$, $q = p^{d}$, $p > 3$, and a prime number $\\ell > 3$ such that $q \\equiv 1 \\pmod{\\ell}$ and $\\ell \\mid \\# E(\\mathbf{F}_{q})$. In this paper we study the possible factorisation patterns over $\\mathbf{F}_{q}[x]$ of the $\\ell^{k}$-division polynomials associated to $E$ with $k \\geq 2$, extending the work of Verdure [6] for $k=1$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on factorisation patterns of division polynomials of elliptic curves over finite fields\",\"authors\":\"Josep M. Miret, Daniel Sadornil, Juan Tena, Javier Valera\",\"doi\":\"10.3792/pjaa.99.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $E$ be an elliptic curve defined over a finite field $\\\\mathbf{F}_{q}$, $q = p^{d}$, $p > 3$, and a prime number $\\\\ell > 3$ such that $q \\\\equiv 1 \\\\pmod{\\\\ell}$ and $\\\\ell \\\\mid \\\\# E(\\\\mathbf{F}_{q})$. In this paper we study the possible factorisation patterns over $\\\\mathbf{F}_{q}[x]$ of the $\\\\ell^{k}$-division polynomials associated to $E$ with $k \\\\geq 2$, extending the work of Verdure [6] for $k=1$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.99.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3792/pjaa.99.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$E$是在有限域$\mathbf{F}_{q}$, $q = p^{d}$, $p > 3$上定义的椭圆曲线,以及一个质数$\ell > 3$,使得$q \equiv 1 \pmod{\ell}$和$\ell \mid \# E(\mathbf{F}_{q})$。在本文中,我们研究了$\mathbf{F}_{q}[x]$上与$E$和$k \geq 2$相关的$\ell^{k}$ -除法多项式的可能的因式分解模式,扩展了Verdure[6]对$k=1$的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A note on factorisation patterns of division polynomials of elliptic curves over finite fields
Let $E$ be an elliptic curve defined over a finite field $\mathbf{F}_{q}$, $q = p^{d}$, $p > 3$, and a prime number $\ell > 3$ such that $q \equiv 1 \pmod{\ell}$ and $\ell \mid \# E(\mathbf{F}_{q})$. In this paper we study the possible factorisation patterns over $\mathbf{F}_{q}[x]$ of the $\ell^{k}$-division polynomials associated to $E$ with $k \geq 2$, extending the work of Verdure [6] for $k=1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信