{"title":"代数数约化阶上的可整除性条件","authors":"Pietro Sgobba","doi":"10.1090/mcom/3848","DOIUrl":null,"url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a number field, and let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finitely generated subgroup of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Superscript times\"> <mml:semantics> <mml:msup> <mml:mi>K</mml:mi> <mml:mo>×<!-- × --></mml:mo> </mml:msup> <mml:annotation encoding=\"application/x-tex\">K^\\times</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Without relying on the Generalized Riemann Hypothesis we prove an asymptotic formula for the number of primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German p\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">p</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the order of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper G mod German p right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo lspace=\"thickmathspace\" rspace=\"thickmathspace\">mod</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">p</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(G\\bmod \\mathfrak p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is divisible by a fixed integer. We also provide a rational expression for the natural density of this set. Furthermore, we study the primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German p\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">p</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which the order is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free, and those for which the order has a prescribed <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\"> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic valuation for finitely many primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\"> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. An additional condition on the Frobenius conjugacy class of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German p\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">p</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be considered. In order to establish these results, we prove an unconditional version of the Chebotarev density theorem for Kummer extensions of number fields.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divisibility conditions on the order of the reductions of algebraic numbers\",\"authors\":\"Pietro Sgobba\",\"doi\":\"10.1090/mcom/3848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a number field, and let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finitely generated subgroup of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K Superscript times\\\"> <mml:semantics> <mml:msup> <mml:mi>K</mml:mi> <mml:mo>×<!-- × --></mml:mo> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">K^\\\\times</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Without relying on the Generalized Riemann Hypothesis we prove an asymptotic formula for the number of primes <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German p\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"fraktur\\\">p</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the order of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper G mod German p right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo lspace=\\\"thickmathspace\\\" rspace=\\\"thickmathspace\\\">mod</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"fraktur\\\">p</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(G\\\\bmod \\\\mathfrak p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is divisible by a fixed integer. We also provide a rational expression for the natural density of this set. Furthermore, we study the primes <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German p\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"fraktur\\\">p</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which the order is <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-free, and those for which the order has a prescribed <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l\\\"> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic valuation for finitely many primes <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l\\\"> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. An additional condition on the Frobenius conjugacy class of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German p\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"fraktur\\\">p</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be considered. In order to establish these results, we prove an unconditional version of the Chebotarev density theorem for Kummer extensions of number fields.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Divisibility conditions on the order of the reductions of algebraic numbers
Let KK be a number field, and let GG be a finitely generated subgroup of K×K^\times. Without relying on the Generalized Riemann Hypothesis we prove an asymptotic formula for the number of primes p\mathfrak p of KK such that the order of (Gmodp)(G\bmod \mathfrak p) is divisible by a fixed integer. We also provide a rational expression for the natural density of this set. Furthermore, we study the primes p\mathfrak p for which the order is kk-free, and those for which the order has a prescribed ℓ\ell-adic valuation for finitely many primes ℓ\ell. An additional condition on the Frobenius conjugacy class of p\mathfrak p may be considered. In order to establish these results, we prove an unconditional version of the Chebotarev density theorem for Kummer extensions of number fields.