干涉合成孔径声纳干涉相位滤波方法综述

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Pan Huang, Weimin Ding, Xiujuan Wang, Xiaojie Teng
{"title":"干涉合成孔径声纳干涉相位滤波方法综述","authors":"Pan Huang, Weimin Ding, Xiujuan Wang, Xiaojie Teng","doi":"10.1177/16878132231201148","DOIUrl":null,"url":null,"abstract":"Interferometric synthetic aperture sonar (InSAS) is a novel three dimensional underwater mapping system, which is widely used in various fields. Interferometric phase filtering is a crucial process in InSAS signal processing. The study of interferogram filtering method has great significance to improve the signal-to-noise ratio (SNR) of interferogram, reduce the difficulty of phase unwrapping, and improve the accuracy of digital elevation maps. Firstly, this article introduces the sources of interferometric phase noise. Secondly, it illustrates the difference between real domain filter and complex domain filter by simulation experiment. Thirdly, the various methods of InSAS interferogram filtering are systematically studied, which can be classified into spatial domain filtering and transform domain filtering. The transform domain filtering can be further divided into frequency domain and wavelet transform filtering. Moreover, the advantages and disadvantages of various methods are analyzed theoretically. Finally, numerical simulation and real-data processing experiments are performed, and the advantages and shortcomings of several methods are compared using residue numbers, root mean square error (RMSE), and CPU time as evaluation criteria.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of interferometric synthetic aperture sonar interferometric phase filtering methods\",\"authors\":\"Pan Huang, Weimin Ding, Xiujuan Wang, Xiaojie Teng\",\"doi\":\"10.1177/16878132231201148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interferometric synthetic aperture sonar (InSAS) is a novel three dimensional underwater mapping system, which is widely used in various fields. Interferometric phase filtering is a crucial process in InSAS signal processing. The study of interferogram filtering method has great significance to improve the signal-to-noise ratio (SNR) of interferogram, reduce the difficulty of phase unwrapping, and improve the accuracy of digital elevation maps. Firstly, this article introduces the sources of interferometric phase noise. Secondly, it illustrates the difference between real domain filter and complex domain filter by simulation experiment. Thirdly, the various methods of InSAS interferogram filtering are systematically studied, which can be classified into spatial domain filtering and transform domain filtering. The transform domain filtering can be further divided into frequency domain and wavelet transform filtering. Moreover, the advantages and disadvantages of various methods are analyzed theoretically. Finally, numerical simulation and real-data processing experiments are performed, and the advantages and shortcomings of several methods are compared using residue numbers, root mean square error (RMSE), and CPU time as evaluation criteria.\",\"PeriodicalId\":49110,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231201148\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231201148","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

干涉型合成孔径声呐是一种新型的水下三维测绘系统,广泛应用于各个领域。干涉相位滤波是InSAS信号处理中的一个重要环节。干涉图滤波方法的研究对于提高干涉图的信噪比、降低相位解包裹难度、提高数字高程图的精度具有重要意义。本文首先介绍了干涉相位噪声的来源。其次,通过仿真实验说明了实域滤波器与复域滤波器的区别。第三,系统地研究了InSAS干涉图滤波的各种方法,将其分为空域滤波和变换域滤波。变换域滤波可进一步分为频域滤波和小波变换滤波。并从理论上分析了各种方法的优缺点。最后,进行了数值模拟和实际数据处理实验,并以残差数、均方根误差(RMSE)和CPU时间为评价标准,比较了几种方法的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of interferometric synthetic aperture sonar interferometric phase filtering methods
Interferometric synthetic aperture sonar (InSAS) is a novel three dimensional underwater mapping system, which is widely used in various fields. Interferometric phase filtering is a crucial process in InSAS signal processing. The study of interferogram filtering method has great significance to improve the signal-to-noise ratio (SNR) of interferogram, reduce the difficulty of phase unwrapping, and improve the accuracy of digital elevation maps. Firstly, this article introduces the sources of interferometric phase noise. Secondly, it illustrates the difference between real domain filter and complex domain filter by simulation experiment. Thirdly, the various methods of InSAS interferogram filtering are systematically studied, which can be classified into spatial domain filtering and transform domain filtering. The transform domain filtering can be further divided into frequency domain and wavelet transform filtering. Moreover, the advantages and disadvantages of various methods are analyzed theoretically. Finally, numerical simulation and real-data processing experiments are performed, and the advantages and shortcomings of several methods are compared using residue numbers, root mean square error (RMSE), and CPU time as evaluation criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering 工程技术-机械工程
CiteScore
3.60
自引率
4.80%
发文量
353
审稿时长
6-12 weeks
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信