涉及无机酸和甲磺酸的大气分子团簇的量子化学模型

IF 6.1 Q2 CHEMISTRY, PHYSICAL
M. Engsvang, H. Wu, Y. Knattrup, J. Kubečka, A. Buchgraitz Jensen, J. Elm
{"title":"涉及无机酸和甲磺酸的大气分子团簇的量子化学模型","authors":"M. Engsvang, H. Wu, Y. Knattrup, J. Kubečka, A. Buchgraitz Jensen, J. Elm","doi":"10.1063/5.0152517","DOIUrl":null,"url":null,"abstract":"Atmospheric molecular cluster formation is the first stage toward aerosol particle formation. Despite intensive progress in recent years, the relative role of different vapors and the mechanisms for forming clusters is still not well-understood. Quantum chemical (QC) methods can give insight into the cluster formation mechanisms and thereby yield information about the potentially relevant compounds. Here, we summarize the QC literature on clustering involving species such as sulfuric acid, methanesulfonic acid, and nitric acid. The importance of iodine species such as iodous acid (HIO2) and iodic acid (HIO3) in atmospheric cluster formation is an emerging topic, and we critically review the recent literature and give our view on how to progress in the future. We outline how machine learning (ML) methods can be used to enhance cluster configurational sampling, leading to a massive increase in the cluster compositions that can be modeled. In the future, ML-boosted cluster formation could allow us to comprehensively understand complex cluster formation with multiple pathways, leading us one step closer to implementing accurate cluster formation mechanisms in atmospheric models.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":"7 1","pages":"0"},"PeriodicalIF":6.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum chemical modeling of atmospheric molecular clusters involving inorganic acids and methanesulfonic acid\",\"authors\":\"M. Engsvang, H. Wu, Y. Knattrup, J. Kubečka, A. Buchgraitz Jensen, J. Elm\",\"doi\":\"10.1063/5.0152517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric molecular cluster formation is the first stage toward aerosol particle formation. Despite intensive progress in recent years, the relative role of different vapors and the mechanisms for forming clusters is still not well-understood. Quantum chemical (QC) methods can give insight into the cluster formation mechanisms and thereby yield information about the potentially relevant compounds. Here, we summarize the QC literature on clustering involving species such as sulfuric acid, methanesulfonic acid, and nitric acid. The importance of iodine species such as iodous acid (HIO2) and iodic acid (HIO3) in atmospheric cluster formation is an emerging topic, and we critically review the recent literature and give our view on how to progress in the future. We outline how machine learning (ML) methods can be used to enhance cluster configurational sampling, leading to a massive increase in the cluster compositions that can be modeled. In the future, ML-boosted cluster formation could allow us to comprehensively understand complex cluster formation with multiple pathways, leading us one step closer to implementing accurate cluster formation mechanisms in atmospheric models.\",\"PeriodicalId\":72559,\"journal\":{\"name\":\"Chemical physics reviews\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical physics reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0152517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical physics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0152517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

大气分子团的形成是气溶胶粒子形成的第一个阶段。尽管近年来取得了长足的进展,但不同蒸汽的相对作用和形成星团的机制仍然没有得到很好的理解。量子化学(QC)方法可以深入了解簇的形成机制,从而获得有关潜在相关化合物的信息。在这里,我们总结了有关聚类的QC文献,包括硫酸、甲磺酸和硝酸。碘物质如碘酸(HIO2)和碘酸(HIO3)在大气星团形成中的重要性是一个新兴的话题,我们对最近的文献进行了批判性的回顾,并对未来的进展提出了我们的看法。我们概述了如何使用机器学习(ML)方法来增强集群配置采样,从而大大增加可以建模的集群组成。在未来,机器学习促进的星团形成可以让我们全面了解具有多种途径的复杂星团形成,使我们更接近于在大气模型中实现准确的星团形成机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum chemical modeling of atmospheric molecular clusters involving inorganic acids and methanesulfonic acid
Atmospheric molecular cluster formation is the first stage toward aerosol particle formation. Despite intensive progress in recent years, the relative role of different vapors and the mechanisms for forming clusters is still not well-understood. Quantum chemical (QC) methods can give insight into the cluster formation mechanisms and thereby yield information about the potentially relevant compounds. Here, we summarize the QC literature on clustering involving species such as sulfuric acid, methanesulfonic acid, and nitric acid. The importance of iodine species such as iodous acid (HIO2) and iodic acid (HIO3) in atmospheric cluster formation is an emerging topic, and we critically review the recent literature and give our view on how to progress in the future. We outline how machine learning (ML) methods can be used to enhance cluster configurational sampling, leading to a massive increase in the cluster compositions that can be modeled. In the future, ML-boosted cluster formation could allow us to comprehensively understand complex cluster formation with multiple pathways, leading us one step closer to implementing accurate cluster formation mechanisms in atmospheric models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信