None B. Ankayarkanni, None Niroj Kumar Pani, None M. Anand, None V. Malathy, None Bhupati
{"title":"P2FLF:基于移动雾计算的隐私保护联邦学习框架","authors":"None B. Ankayarkanni, None Niroj Kumar Pani, None M. Anand, None V. Malathy, None Bhupati","doi":"10.3991/ijim.v17i17.42835","DOIUrl":null,"url":null,"abstract":"Mobile IoT devices provide a lot of data every day, which provides a strong base for machine learning to succeed. However, the stringent privacy demands associated with mobile IoT data pose significant challenges for its implementation in machine learning tasks. In order to address this challenge, we propose privacy-preserving federated learning framework (P2FLF) in a mobile fog computing environment. By employing federated learning, it is possible to bring together numerous dispersed user sets and collectively train models without the need to upload datasets. Federated learning, an approach to distributed machine learning, has garnered significant attention for its ability to enable collaborative model training without the need to share sensitive data. By utilizing fog nodes deployed at the edge of the network, P2FLF ensures that sensitive mobile IoT data remains local and is not transmitted to the central server. The framework integrates privacy-preserving methods, such as differential privacy and encryption, to safeguard the data throughout the learning process. We evaluate the performance and efficacy of P2FLF through experimental simulations and compare it with existing approaches. The results demonstrate that P2FLF strikes a balance between model accuracy and privacy protection while enabling efficient federated learning in mobile IoT environments.","PeriodicalId":53486,"journal":{"name":"International Journal of Interactive Mobile Technologies","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"P2FLF: Privacy-Preserving Federated Learning Framework Based on Mobile Fog Computing\",\"authors\":\"None B. Ankayarkanni, None Niroj Kumar Pani, None M. Anand, None V. Malathy, None Bhupati\",\"doi\":\"10.3991/ijim.v17i17.42835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile IoT devices provide a lot of data every day, which provides a strong base for machine learning to succeed. However, the stringent privacy demands associated with mobile IoT data pose significant challenges for its implementation in machine learning tasks. In order to address this challenge, we propose privacy-preserving federated learning framework (P2FLF) in a mobile fog computing environment. By employing federated learning, it is possible to bring together numerous dispersed user sets and collectively train models without the need to upload datasets. Federated learning, an approach to distributed machine learning, has garnered significant attention for its ability to enable collaborative model training without the need to share sensitive data. By utilizing fog nodes deployed at the edge of the network, P2FLF ensures that sensitive mobile IoT data remains local and is not transmitted to the central server. The framework integrates privacy-preserving methods, such as differential privacy and encryption, to safeguard the data throughout the learning process. We evaluate the performance and efficacy of P2FLF through experimental simulations and compare it with existing approaches. The results demonstrate that P2FLF strikes a balance between model accuracy and privacy protection while enabling efficient federated learning in mobile IoT environments.\",\"PeriodicalId\":53486,\"journal\":{\"name\":\"International Journal of Interactive Mobile Technologies\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Interactive Mobile Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijim.v17i17.42835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Interactive Mobile Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijim.v17i17.42835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
P2FLF: Privacy-Preserving Federated Learning Framework Based on Mobile Fog Computing
Mobile IoT devices provide a lot of data every day, which provides a strong base for machine learning to succeed. However, the stringent privacy demands associated with mobile IoT data pose significant challenges for its implementation in machine learning tasks. In order to address this challenge, we propose privacy-preserving federated learning framework (P2FLF) in a mobile fog computing environment. By employing federated learning, it is possible to bring together numerous dispersed user sets and collectively train models without the need to upload datasets. Federated learning, an approach to distributed machine learning, has garnered significant attention for its ability to enable collaborative model training without the need to share sensitive data. By utilizing fog nodes deployed at the edge of the network, P2FLF ensures that sensitive mobile IoT data remains local and is not transmitted to the central server. The framework integrates privacy-preserving methods, such as differential privacy and encryption, to safeguard the data throughout the learning process. We evaluate the performance and efficacy of P2FLF through experimental simulations and compare it with existing approaches. The results demonstrate that P2FLF strikes a balance between model accuracy and privacy protection while enabling efficient federated learning in mobile IoT environments.
期刊介绍:
This interdisciplinary journal focuses on the exchange of relevant trends and research results and presents practical experiences gained while developing and testing elements of interactive mobile technologies. It bridges the gap between pure academic research journals and more practical publications. So it covers the full range from research, application development to experience reports and product descriptions. Fields of interest include, but are not limited to: -Future trends in m-technologies- Architectures and infrastructures for ubiquitous mobile systems- Services for mobile networks- Industrial Applications- Mobile Computing- Adaptive and Adaptable environments using mobile devices- Mobile Web and video Conferencing- M-learning applications- M-learning standards- Life-long m-learning- Mobile technology support for educator and student- Remote and virtual laboratories- Mobile measurement technologies- Multimedia and virtual environments- Wireless and Ad-hoc Networks- Smart Agent Technologies- Social Impact of Current and Next-generation Mobile Technologies- Facilitation of Mobile Learning- Cost-effectiveness- Real world experiences- Pilot projects, products and applications