{"title":"灵芝菌丝体三萜高效液相色谱分析谱","authors":"Deng-Hai Chen, Jian-Yuan Wang, Mon-Tarng Chen, Yen-Chun Liu, Kuang-Dee Chen","doi":"10.3390/microbiolres14030092","DOIUrl":null,"url":null,"abstract":"(1) Background: Ganoderic acids (GAs) are specific triterpenes of Ganoderma lucidum. The HPLC fingerprint profile of GAs of the fruiting body is well known, but their mycelial fingerprinting remains unclear. (2) Methods: An ethanol extract of the mycelium of G. lucidum (YK-01) was further purified via preparative HPLC. The triterpenoid compositions for four strains of G. lucidum and one strain of G. formosanum (purple lingzhi) were analyzed using HPLC. (3) Results: Nineteen lanostane triterpenes, including five new triterpenes, GA-TP (1), ganodermic acid Jc (GmA-Jc) (2), GmA-Jd (3), GA-TQ1 (4), and ganoderal B1 (5), and fourteen known triterpenes 6–19 were isolated from the ethanol extract. Their structures were identified by mass and extensive NMR spectroscopy. A green chemical HPLC analytical method was developed using ethanol and acetic acid as a mobile phase, and all isolated compounds can be well separated. These triterpenes comprise a unique HPLC chromatograph of the G. lucidum mycelium. All four G. lucidum strains showed the same HPLC chromatographic pattern, whereas G. formosanum displayed a different pattern. Quantitation methods for ganoderic acid T (10) and S (12) were also validated. (4) Conclusions: The triterpenoid HPLC analytical method can be used to identify the G. lucidum species and to determine the contents of GA-T and GA-S.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Triterpenoid High-Performance Liquid Chromatography Analytical Profiles of the Mycelia of Ganoderma lucidum (lingzhi)\",\"authors\":\"Deng-Hai Chen, Jian-Yuan Wang, Mon-Tarng Chen, Yen-Chun Liu, Kuang-Dee Chen\",\"doi\":\"10.3390/microbiolres14030092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(1) Background: Ganoderic acids (GAs) are specific triterpenes of Ganoderma lucidum. The HPLC fingerprint profile of GAs of the fruiting body is well known, but their mycelial fingerprinting remains unclear. (2) Methods: An ethanol extract of the mycelium of G. lucidum (YK-01) was further purified via preparative HPLC. The triterpenoid compositions for four strains of G. lucidum and one strain of G. formosanum (purple lingzhi) were analyzed using HPLC. (3) Results: Nineteen lanostane triterpenes, including five new triterpenes, GA-TP (1), ganodermic acid Jc (GmA-Jc) (2), GmA-Jd (3), GA-TQ1 (4), and ganoderal B1 (5), and fourteen known triterpenes 6–19 were isolated from the ethanol extract. Their structures were identified by mass and extensive NMR spectroscopy. A green chemical HPLC analytical method was developed using ethanol and acetic acid as a mobile phase, and all isolated compounds can be well separated. These triterpenes comprise a unique HPLC chromatograph of the G. lucidum mycelium. All four G. lucidum strains showed the same HPLC chromatographic pattern, whereas G. formosanum displayed a different pattern. Quantitation methods for ganoderic acid T (10) and S (12) were also validated. (4) Conclusions: The triterpenoid HPLC analytical method can be used to identify the G. lucidum species and to determine the contents of GA-T and GA-S.\",\"PeriodicalId\":43788,\"journal\":{\"name\":\"Microbiology Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microbiolres14030092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microbiolres14030092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
The Triterpenoid High-Performance Liquid Chromatography Analytical Profiles of the Mycelia of Ganoderma lucidum (lingzhi)
(1) Background: Ganoderic acids (GAs) are specific triterpenes of Ganoderma lucidum. The HPLC fingerprint profile of GAs of the fruiting body is well known, but their mycelial fingerprinting remains unclear. (2) Methods: An ethanol extract of the mycelium of G. lucidum (YK-01) was further purified via preparative HPLC. The triterpenoid compositions for four strains of G. lucidum and one strain of G. formosanum (purple lingzhi) were analyzed using HPLC. (3) Results: Nineteen lanostane triterpenes, including five new triterpenes, GA-TP (1), ganodermic acid Jc (GmA-Jc) (2), GmA-Jd (3), GA-TQ1 (4), and ganoderal B1 (5), and fourteen known triterpenes 6–19 were isolated from the ethanol extract. Their structures were identified by mass and extensive NMR spectroscopy. A green chemical HPLC analytical method was developed using ethanol and acetic acid as a mobile phase, and all isolated compounds can be well separated. These triterpenes comprise a unique HPLC chromatograph of the G. lucidum mycelium. All four G. lucidum strains showed the same HPLC chromatographic pattern, whereas G. formosanum displayed a different pattern. Quantitation methods for ganoderic acid T (10) and S (12) were also validated. (4) Conclusions: The triterpenoid HPLC analytical method can be used to identify the G. lucidum species and to determine the contents of GA-T and GA-S.
期刊介绍:
Microbiology Research is an international, online-only, open access peer-reviewed journal which publishes original research, review articles, editorials, perspectives, case reports and brief reports to benefit researchers, microbiologists, physicians, veterinarians. Microbiology Research publishes ‘Clinic’ and ‘Research’ papers divided into two different skill and proficiency levels: ‘Junior’ and ‘Professional’. The aim of this four quadrant grid is to encourage younger researchers, physicians and veterinarians to submit their results even if their studies encompass just a limited set of observations or rely on basic statistical approach, yet upholding the customary sound approach of every scientific article.