机器学习Alpha的期限结构

David Blitz, Matthias X. Hanauer, Tobias Hoogteijling, Clint Howard
{"title":"机器学习Alpha的期限结构","authors":"David Blitz, Matthias X. Hanauer, Tobias Hoogteijling, Clint Howard","doi":"10.3905/jfds.2023.1.135","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) models for predicting stock returns are typically trained on one-month forward returns. Although these models show impressive full-sample gross alphas, their performance net of transaction costs post-2004 is close to zero. By training on longer prediction horizons and using efficient portfolio construction rules, the authors demonstrate that ML-based investment strategies can still yield significant positive net returns. Longer-horizon strategies select slower signals and load more on traditional asset pricing factors but still unlock unique alpha. The authors conclude that design choices are critical for the success of ML models in real-life applications.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Term Structure of Machine Learning Alpha\",\"authors\":\"David Blitz, Matthias X. Hanauer, Tobias Hoogteijling, Clint Howard\",\"doi\":\"10.3905/jfds.2023.1.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) models for predicting stock returns are typically trained on one-month forward returns. Although these models show impressive full-sample gross alphas, their performance net of transaction costs post-2004 is close to zero. By training on longer prediction horizons and using efficient portfolio construction rules, the authors demonstrate that ML-based investment strategies can still yield significant positive net returns. Longer-horizon strategies select slower signals and load more on traditional asset pricing factors but still unlock unique alpha. The authors conclude that design choices are critical for the success of ML models in real-life applications.\",\"PeriodicalId\":199045,\"journal\":{\"name\":\"The Journal of Financial Data Science\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Financial Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/jfds.2023.1.135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2023.1.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于预测股票回报的机器学习(ML)模型通常是根据一个月的远期回报进行训练的。尽管这些模型显示出令人印象深刻的全样本总阿尔法值,但它们扣除2004年后交易成本后的表现接近于零。通过在更长的预测范围上进行训练,并使用有效的投资组合构建规则,作者证明了基于机器学习的投资策略仍然可以产生显著的正净回报。长线策略选择较慢的信号,更多地考虑传统的资产定价因素,但仍能释放出独特的阿尔法效应。作者得出结论,设计选择对于ML模型在实际应用中的成功至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Term Structure of Machine Learning Alpha
Machine learning (ML) models for predicting stock returns are typically trained on one-month forward returns. Although these models show impressive full-sample gross alphas, their performance net of transaction costs post-2004 is close to zero. By training on longer prediction horizons and using efficient portfolio construction rules, the authors demonstrate that ML-based investment strategies can still yield significant positive net returns. Longer-horizon strategies select slower signals and load more on traditional asset pricing factors but still unlock unique alpha. The authors conclude that design choices are critical for the success of ML models in real-life applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信