Allen G. Hunt, Behzad Ghanbarian, Boris Faybishenko
{"title":"气候输入下河网时空演化模式","authors":"Allen G. Hunt, Behzad Ghanbarian, Boris Faybishenko","doi":"10.3389/frwa.2023.1174570","DOIUrl":null,"url":null,"abstract":"Predicting the temporal and spatial evolution of the river network is part of the Earth's critical zone investigations, which has become an important endeavor. However, modeling integration of the river network and critical zone over millions of years is rare. We address the problem of how to predict integrated river length development as a function of time within a framework of addressing the critical zone depth as a function of time. In case of groundwater-river interaction, we find a non-linear spatio-temporal scaling relationship between time, t , and total river length L , given by t ≈ L p with power p being near 1.2. The basis of our model is the presumption that groundwater flow paths are relevant to river integration. As river integration may proceed over disconnected basins with irregular relief, the relevant optimal subsurface flow paths are proposed to be defined within a 3D network, with optimal path exponent 1.43. Because the 2D model of the river length has already been shown to relate to a power of the Euclidean distance across a drainage basin with the predicted universal optimal path exponent from percolation theory, D opt = 1.21, the optimal groundwater paths should relate to the surface river length with an exponent equaling the ratio 1.43/1.21 = 1.18. To define a predictive relationship for the river length, we need to use specific length and time scales. We assume that the fundamental specific length scale is a characteristic particle size (which is commonly used to define the pore scale flow network), and the fundamental time scale is the ratio of the particle size to the regional groundwater flow rate. In this paper, we consider cases of predicting spatio-temporal scaling of drainage organization in the southwestern USA–the Amargosa, Mojave, Gila (and its tributaries) and the Rio Grande, and Pecos Rivers. For the Mojave and Gila Rivers, theoretical results for time scales of river integration since ca. 10 Ma are quite predictive, though the predicted time scales exceed observation for the Rio Grande and Pecos.","PeriodicalId":33801,"journal":{"name":"Frontiers in Water","volume":"145 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model of temporal and spatial river network evolution with climatic inputs\",\"authors\":\"Allen G. Hunt, Behzad Ghanbarian, Boris Faybishenko\",\"doi\":\"10.3389/frwa.2023.1174570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the temporal and spatial evolution of the river network is part of the Earth's critical zone investigations, which has become an important endeavor. However, modeling integration of the river network and critical zone over millions of years is rare. We address the problem of how to predict integrated river length development as a function of time within a framework of addressing the critical zone depth as a function of time. In case of groundwater-river interaction, we find a non-linear spatio-temporal scaling relationship between time, t , and total river length L , given by t ≈ L p with power p being near 1.2. The basis of our model is the presumption that groundwater flow paths are relevant to river integration. As river integration may proceed over disconnected basins with irregular relief, the relevant optimal subsurface flow paths are proposed to be defined within a 3D network, with optimal path exponent 1.43. Because the 2D model of the river length has already been shown to relate to a power of the Euclidean distance across a drainage basin with the predicted universal optimal path exponent from percolation theory, D opt = 1.21, the optimal groundwater paths should relate to the surface river length with an exponent equaling the ratio 1.43/1.21 = 1.18. To define a predictive relationship for the river length, we need to use specific length and time scales. We assume that the fundamental specific length scale is a characteristic particle size (which is commonly used to define the pore scale flow network), and the fundamental time scale is the ratio of the particle size to the regional groundwater flow rate. In this paper, we consider cases of predicting spatio-temporal scaling of drainage organization in the southwestern USA–the Amargosa, Mojave, Gila (and its tributaries) and the Rio Grande, and Pecos Rivers. For the Mojave and Gila Rivers, theoretical results for time scales of river integration since ca. 10 Ma are quite predictive, though the predicted time scales exceed observation for the Rio Grande and Pecos.\",\"PeriodicalId\":33801,\"journal\":{\"name\":\"Frontiers in Water\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frwa.2023.1174570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frwa.2023.1174570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
A model of temporal and spatial river network evolution with climatic inputs
Predicting the temporal and spatial evolution of the river network is part of the Earth's critical zone investigations, which has become an important endeavor. However, modeling integration of the river network and critical zone over millions of years is rare. We address the problem of how to predict integrated river length development as a function of time within a framework of addressing the critical zone depth as a function of time. In case of groundwater-river interaction, we find a non-linear spatio-temporal scaling relationship between time, t , and total river length L , given by t ≈ L p with power p being near 1.2. The basis of our model is the presumption that groundwater flow paths are relevant to river integration. As river integration may proceed over disconnected basins with irregular relief, the relevant optimal subsurface flow paths are proposed to be defined within a 3D network, with optimal path exponent 1.43. Because the 2D model of the river length has already been shown to relate to a power of the Euclidean distance across a drainage basin with the predicted universal optimal path exponent from percolation theory, D opt = 1.21, the optimal groundwater paths should relate to the surface river length with an exponent equaling the ratio 1.43/1.21 = 1.18. To define a predictive relationship for the river length, we need to use specific length and time scales. We assume that the fundamental specific length scale is a characteristic particle size (which is commonly used to define the pore scale flow network), and the fundamental time scale is the ratio of the particle size to the regional groundwater flow rate. In this paper, we consider cases of predicting spatio-temporal scaling of drainage organization in the southwestern USA–the Amargosa, Mojave, Gila (and its tributaries) and the Rio Grande, and Pecos Rivers. For the Mojave and Gila Rivers, theoretical results for time scales of river integration since ca. 10 Ma are quite predictive, though the predicted time scales exceed observation for the Rio Grande and Pecos.