{"title":"加纳绿色氢势评估:PEM电解工艺和地理空间多标准方法的应用","authors":"Mary Asare-Addo","doi":"10.1080/14786451.2023.2256892","DOIUrl":null,"url":null,"abstract":"With green hydrogen gaining traction as a viable sustainable energy option, the present study explores the potential of producing green hydrogen from wind and solar energy in Ghana. The study combined the use of geospatial multi-criteria approach and PEM electrolysis process to estimate the geographical and technical potential of the selected two renewable resources. The study also included an assessment of potential areas for grid integration. Technology specifications of a monocrystalline solar PV module and 1 MW wind turbine module were applied. Results of the assessment show that about 85% of the total land area in the country is available for green hydrogen projects. Technically, capacities of ∼14,196.21 Mt of green hydrogen using solar and ∼10,123.36 Mt/year from wind energy can be produced annually in the country. It was also observed that some regions, especially regions in the northern part of the country even though showed the most favourable locations for solar-based green hydrogen projects with technical potential of over 1500 Mt/year, these regions may not qualify for a grid connected system based on the current electrification policy of the country due to the regions’ low population density and distance from the power grid network threshold.","PeriodicalId":14406,"journal":{"name":"International Journal of Sustainable Energy","volume":"10 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green hydrogen potential assessment in Ghana: application of PEM electrolysis process and geospatial-multi-criteria approach\",\"authors\":\"Mary Asare-Addo\",\"doi\":\"10.1080/14786451.2023.2256892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With green hydrogen gaining traction as a viable sustainable energy option, the present study explores the potential of producing green hydrogen from wind and solar energy in Ghana. The study combined the use of geospatial multi-criteria approach and PEM electrolysis process to estimate the geographical and technical potential of the selected two renewable resources. The study also included an assessment of potential areas for grid integration. Technology specifications of a monocrystalline solar PV module and 1 MW wind turbine module were applied. Results of the assessment show that about 85% of the total land area in the country is available for green hydrogen projects. Technically, capacities of ∼14,196.21 Mt of green hydrogen using solar and ∼10,123.36 Mt/year from wind energy can be produced annually in the country. It was also observed that some regions, especially regions in the northern part of the country even though showed the most favourable locations for solar-based green hydrogen projects with technical potential of over 1500 Mt/year, these regions may not qualify for a grid connected system based on the current electrification policy of the country due to the regions’ low population density and distance from the power grid network threshold.\",\"PeriodicalId\":14406,\"journal\":{\"name\":\"International Journal of Sustainable Energy\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14786451.2023.2256892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14786451.2023.2256892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Green hydrogen potential assessment in Ghana: application of PEM electrolysis process and geospatial-multi-criteria approach
With green hydrogen gaining traction as a viable sustainable energy option, the present study explores the potential of producing green hydrogen from wind and solar energy in Ghana. The study combined the use of geospatial multi-criteria approach and PEM electrolysis process to estimate the geographical and technical potential of the selected two renewable resources. The study also included an assessment of potential areas for grid integration. Technology specifications of a monocrystalline solar PV module and 1 MW wind turbine module were applied. Results of the assessment show that about 85% of the total land area in the country is available for green hydrogen projects. Technically, capacities of ∼14,196.21 Mt of green hydrogen using solar and ∼10,123.36 Mt/year from wind energy can be produced annually in the country. It was also observed that some regions, especially regions in the northern part of the country even though showed the most favourable locations for solar-based green hydrogen projects with technical potential of over 1500 Mt/year, these regions may not qualify for a grid connected system based on the current electrification policy of the country due to the regions’ low population density and distance from the power grid network threshold.
期刊介绍:
Engineering and sustainable development are intrinsically linked. All capital plant and every consumable product depends on an engineering input through design, manufacture and operation, if not for the product itself then for the equipment required to process and transport the raw materials and the final product. Many aspects of sustainable development depend directly on appropriate and timely actions by engineers. Engineering is an extended process of analysis, synthesis, evaluation and execution and, therefore, it is argued that engineers must be involved from the outset of any proposal to develop sustainable solutions. Engineering embraces many disciplines and truly sustainable solutions are usually inter-disciplinary in nature.