Rizk M. Rizk-Allah, Islam M. Eldesoky, Ekram A. Aboali, Sarah M. Nasr
{"title":"基于混沌搜索的堆优化算法求解非线性规划问题","authors":"Rizk M. Rizk-Allah, Islam M. Eldesoky, Ekram A. Aboali, Sarah M. Nasr","doi":"10.1007/s44196-023-00327-1","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a heap-based optimizer algorithm with chaotic search has been presented for the global solution of nonlinear programming problems. Heap-based optimizer (HBO) is a modern human social behavior-influenced algorithm that has been presented as an effective method to solve nonlinear programming problems. One of the difficulties that faces HBO is that it falls into locally optimal solutions and does not reach the global solution. To recompense the disadvantages of such modern algorithm, we integrate a heap-based optimizer with a chaotic search to reach the global optimization for nonlinear programming problems. The proposed algorithm displays the advantages of both modern techniques. The robustness of the proposed algorithm is inspected on a wide scale of different 42 problems including unimodal, multi-modal test problems, and CEC-C06 2019 benchmark problems. The comprehensive results have shown that the proposed algorithm effectively deals with nonlinear programming problems compared with 11 highly cited algorithms in addressing the tasks of optimization. As well as the rapid performance of the proposed algorithm in treating nonlinear programming problems has been proved as the proposed algorithm has taken less time to find the global solution.","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"111 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heap-Based Optimizer Algorithm with Chaotic Search for Nonlinear Programming Problem Global Solution\",\"authors\":\"Rizk M. Rizk-Allah, Islam M. Eldesoky, Ekram A. Aboali, Sarah M. Nasr\",\"doi\":\"10.1007/s44196-023-00327-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, a heap-based optimizer algorithm with chaotic search has been presented for the global solution of nonlinear programming problems. Heap-based optimizer (HBO) is a modern human social behavior-influenced algorithm that has been presented as an effective method to solve nonlinear programming problems. One of the difficulties that faces HBO is that it falls into locally optimal solutions and does not reach the global solution. To recompense the disadvantages of such modern algorithm, we integrate a heap-based optimizer with a chaotic search to reach the global optimization for nonlinear programming problems. The proposed algorithm displays the advantages of both modern techniques. The robustness of the proposed algorithm is inspected on a wide scale of different 42 problems including unimodal, multi-modal test problems, and CEC-C06 2019 benchmark problems. The comprehensive results have shown that the proposed algorithm effectively deals with nonlinear programming problems compared with 11 highly cited algorithms in addressing the tasks of optimization. As well as the rapid performance of the proposed algorithm in treating nonlinear programming problems has been proved as the proposed algorithm has taken less time to find the global solution.\",\"PeriodicalId\":54967,\"journal\":{\"name\":\"International Journal of Computational Intelligence Systems\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44196-023-00327-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44196-023-00327-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heap-Based Optimizer Algorithm with Chaotic Search for Nonlinear Programming Problem Global Solution
Abstract In this paper, a heap-based optimizer algorithm with chaotic search has been presented for the global solution of nonlinear programming problems. Heap-based optimizer (HBO) is a modern human social behavior-influenced algorithm that has been presented as an effective method to solve nonlinear programming problems. One of the difficulties that faces HBO is that it falls into locally optimal solutions and does not reach the global solution. To recompense the disadvantages of such modern algorithm, we integrate a heap-based optimizer with a chaotic search to reach the global optimization for nonlinear programming problems. The proposed algorithm displays the advantages of both modern techniques. The robustness of the proposed algorithm is inspected on a wide scale of different 42 problems including unimodal, multi-modal test problems, and CEC-C06 2019 benchmark problems. The comprehensive results have shown that the proposed algorithm effectively deals with nonlinear programming problems compared with 11 highly cited algorithms in addressing the tasks of optimization. As well as the rapid performance of the proposed algorithm in treating nonlinear programming problems has been proved as the proposed algorithm has taken less time to find the global solution.
期刊介绍:
The International Journal of Computational Intelligence Systems publishes original research on all aspects of applied computational intelligence, especially targeting papers demonstrating the use of techniques and methods originating from computational intelligence theory. The core theories of computational intelligence are fuzzy logic, neural networks, evolutionary computation and probabilistic reasoning. The journal publishes only articles related to the use of computational intelligence and broadly covers the following topics:
-Autonomous reasoning-
Bio-informatics-
Cloud computing-
Condition monitoring-
Data science-
Data mining-
Data visualization-
Decision support systems-
Fault diagnosis-
Intelligent information retrieval-
Human-machine interaction and interfaces-
Image processing-
Internet and networks-
Noise analysis-
Pattern recognition-
Prediction systems-
Power (nuclear) safety systems-
Process and system control-
Real-time systems-
Risk analysis and safety-related issues-
Robotics-
Signal and image processing-
IoT and smart environments-
Systems integration-
System control-
System modelling and optimization-
Telecommunications-
Time series prediction-
Warning systems-
Virtual reality-
Web intelligence-
Deep learning