复解析对ENZ材料介电常数的依赖:光子掺杂的例子

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Robert V. Kohn, Raghavendra Venkatraman
{"title":"复解析对ENZ材料介电常数的依赖:光子掺杂的例子","authors":"Robert V. Kohn,&nbsp;Raghavendra Venkatraman","doi":"10.1002/cpa.22138","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the physics literature on “photonic doping” of scatterers made from “epsilon-near-zero” (ENZ) materials, we consider how the scattering of time-harmonic TM electromagnetic waves by a cylindrical ENZ region <math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>×</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$\\Omega \\times \\mathbb {R}$</annotation>\n </semantics></math> is affected by the presence of a “dopant” <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>⊂</mo>\n <mi>Ω</mi>\n </mrow>\n <annotation>$D \\subset \\Omega$</annotation>\n </semantics></math> in which the dielectric permittivity is not near zero. Mathematically, this reduces to analysis of a 2D Helmholtz equation <math>\n <semantics>\n <mrow>\n <mi>div</mi>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>∇</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <msup>\n <mi>k</mi>\n <mn>2</mn>\n </msup>\n <mi>u</mi>\n <mo>=</mo>\n <mi>f</mi>\n </mrow>\n <annotation>$\\mathrm{div}\\, (a(x)\\nabla u) + k^2 u = f$</annotation>\n </semantics></math> with a piecewise-constant, complex valued coefficient <i>a</i> that is nearly infinite (say <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>=</mo>\n <mfrac>\n <mn>1</mn>\n <mi>δ</mi>\n </mfrac>\n </mrow>\n <annotation>$a = \\frac{1}{\\delta }$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mo>≈</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\delta \\approx 0$</annotation>\n </semantics></math>) in <math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>∖</mo>\n <mover>\n <mi>D</mi>\n <mo>¯</mo>\n </mover>\n </mrow>\n <annotation>$\\Omega \\setminus \\overline{D}$</annotation>\n </semantics></math>. We show (under suitable hypotheses) that the solution <i>u</i> depends analytically on δ near 0, and we give a simple PDE characterization of the terms in its Taylor expansion. For the application to photonic doping, it is the leading-order corrections in δ that are most interesting: they explain why photonic doping is only mildly affected by the presence of losses, and why it is seen even at frequencies where the dielectric permittivity is merely small. Equally important: our results include a PDE characterization of the leading-order electric field in the ENZ region as <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\delta \\rightarrow 0$</annotation>\n </semantics></math>, whereas the existing literature on photonic doping provides only the leading-order magnetic field.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex analytic dependence on the dielectric permittivity in ENZ materials: The photonic doping example\",\"authors\":\"Robert V. Kohn,&nbsp;Raghavendra Venkatraman\",\"doi\":\"10.1002/cpa.22138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by the physics literature on “photonic doping” of scatterers made from “epsilon-near-zero” (ENZ) materials, we consider how the scattering of time-harmonic TM electromagnetic waves by a cylindrical ENZ region <math>\\n <semantics>\\n <mrow>\\n <mi>Ω</mi>\\n <mo>×</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$\\\\Omega \\\\times \\\\mathbb {R}$</annotation>\\n </semantics></math> is affected by the presence of a “dopant” <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n <mo>⊂</mo>\\n <mi>Ω</mi>\\n </mrow>\\n <annotation>$D \\\\subset \\\\Omega$</annotation>\\n </semantics></math> in which the dielectric permittivity is not near zero. Mathematically, this reduces to analysis of a 2D Helmholtz equation <math>\\n <semantics>\\n <mrow>\\n <mi>div</mi>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∇</mo>\\n <mi>u</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>+</mo>\\n <msup>\\n <mi>k</mi>\\n <mn>2</mn>\\n </msup>\\n <mi>u</mi>\\n <mo>=</mo>\\n <mi>f</mi>\\n </mrow>\\n <annotation>$\\\\mathrm{div}\\\\, (a(x)\\\\nabla u) + k^2 u = f$</annotation>\\n </semantics></math> with a piecewise-constant, complex valued coefficient <i>a</i> that is nearly infinite (say <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>=</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mi>δ</mi>\\n </mfrac>\\n </mrow>\\n <annotation>$a = \\\\frac{1}{\\\\delta }$</annotation>\\n </semantics></math> with <math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n <mo>≈</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\delta \\\\approx 0$</annotation>\\n </semantics></math>) in <math>\\n <semantics>\\n <mrow>\\n <mi>Ω</mi>\\n <mo>∖</mo>\\n <mover>\\n <mi>D</mi>\\n <mo>¯</mo>\\n </mover>\\n </mrow>\\n <annotation>$\\\\Omega \\\\setminus \\\\overline{D}$</annotation>\\n </semantics></math>. We show (under suitable hypotheses) that the solution <i>u</i> depends analytically on δ near 0, and we give a simple PDE characterization of the terms in its Taylor expansion. For the application to photonic doping, it is the leading-order corrections in δ that are most interesting: they explain why photonic doping is only mildly affected by the presence of losses, and why it is seen even at frequencies where the dielectric permittivity is merely small. Equally important: our results include a PDE characterization of the leading-order electric field in the ENZ region as <math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n <mo>→</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\delta \\\\rightarrow 0$</annotation>\\n </semantics></math>, whereas the existing literature on photonic doping provides only the leading-order magnetic field.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22138\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22138","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

受“epsilon-near-zero”(ENZ)材料散射体“光子掺杂”的物理文献的启发,我们考虑时谐TM电磁波在圆柱形ENZ区域Ω × R $\Omega \times \mathbb {R}$中的散射如何受到介电常数不接近于零的“掺杂剂”D∧Ω $D \subset \Omega$的影响。数学上,这可以简化为二维亥姆霍兹方程div (a (x)∇u) + k2u的分析= f $\mathrm{div}\, (a(x)\nabla u) + k^2 u = f$分段常数,复值系数a在Ω∈中近似无穷大(例如a = 1 δ $a = \frac{1}{\delta }$, δ≈0 $\delta \approx 0$)D¯$\Omega \setminus \overline{D}$。我们证明(在适当的假设下)解u解析地依赖于0附近的δ,并给出了其泰勒展开式中项的简单偏微分方程表征。对于光子掺杂的应用,δ的阶修正是最有趣的:它们解释了为什么光子掺杂只受到损耗的轻微影响,以及为什么即使在介电常数很小的频率下也能看到它。同样重要的是:我们的研究结果包括了ENZ区域的先导级电场δ→0 $\delta \rightarrow 0$的PDE表征,而现有的关于光子掺杂的文献只提供了先导级磁场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex analytic dependence on the dielectric permittivity in ENZ materials: The photonic doping example

Motivated by the physics literature on “photonic doping” of scatterers made from “epsilon-near-zero” (ENZ) materials, we consider how the scattering of time-harmonic TM electromagnetic waves by a cylindrical ENZ region Ω × R $\Omega \times \mathbb {R}$ is affected by the presence of a “dopant” D Ω $D \subset \Omega$ in which the dielectric permittivity is not near zero. Mathematically, this reduces to analysis of a 2D Helmholtz equation  div ( a ( x ) u ) + k 2 u = f $\mathrm{div}\, (a(x)\nabla u) + k^2 u = f$ with a piecewise-constant, complex valued coefficient a that is nearly infinite (say a = 1 δ $a = \frac{1}{\delta }$ with δ 0 $\delta \approx 0$ ) in Ω D ¯ $\Omega \setminus \overline{D}$ . We show (under suitable hypotheses) that the solution u depends analytically on δ near 0, and we give a simple PDE characterization of the terms in its Taylor expansion. For the application to photonic doping, it is the leading-order corrections in δ that are most interesting: they explain why photonic doping is only mildly affected by the presence of losses, and why it is seen even at frequencies where the dielectric permittivity is merely small. Equally important: our results include a PDE characterization of the leading-order electric field in the ENZ region as δ 0 $\delta \rightarrow 0$ , whereas the existing literature on photonic doping provides only the leading-order magnetic field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信