Tresca vs. von Mises:在概率背景下哪个失效准则更保守?

IF 2.6 4区 工程技术 Q2 MECHANICS
Americo Cunha, Yasar Yanik, Carlo Olivieri, Samuel da Silva
{"title":"Tresca vs. von Mises:在概率背景下哪个失效准则更保守?","authors":"Americo Cunha, Yasar Yanik, Carlo Olivieri, Samuel da Silva","doi":"10.1115/1.4063894","DOIUrl":null,"url":null,"abstract":"Abstract This tutorial examines the failure theories of Tresca and von Mises, both of which are crucial for designing metallic structures. Conventionally, Tresca is regarded as more conservative than von Mises from a deterministic perspective. This tutorial, however, introduces a different viewpoint, presenting a scenario where von Mises theory may appear more conservative when variability in the mechanical system parameters is considered. This often overlooked aspect is not extensively addressed in standard textbooks on solid mechanics and the strength of materials. The tutorial aims to shed light on the non-negligible probability where von Mises criterion yields a smaller equivalent stress than Tresca, thus being more conservative. It underscores the importance of integrating probabilistic considerations into stress analyses of solids, offering valuable insights for the education of structural mechanics.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tresca vs. von Mises: Which failure criterion is more conservative in a probabilistic context?\",\"authors\":\"Americo Cunha, Yasar Yanik, Carlo Olivieri, Samuel da Silva\",\"doi\":\"10.1115/1.4063894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This tutorial examines the failure theories of Tresca and von Mises, both of which are crucial for designing metallic structures. Conventionally, Tresca is regarded as more conservative than von Mises from a deterministic perspective. This tutorial, however, introduces a different viewpoint, presenting a scenario where von Mises theory may appear more conservative when variability in the mechanical system parameters is considered. This often overlooked aspect is not extensively addressed in standard textbooks on solid mechanics and the strength of materials. The tutorial aims to shed light on the non-negligible probability where von Mises criterion yields a smaller equivalent stress than Tresca, thus being more conservative. It underscores the importance of integrating probabilistic considerations into stress analyses of solids, offering valuable insights for the education of structural mechanics.\",\"PeriodicalId\":54880,\"journal\":{\"name\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063894\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063894","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本教程探讨了特雷斯卡和米塞斯的失效理论,这两者都是设计金属结构的关键。通常,从决定论的角度来看,特雷斯卡被认为比米塞斯更保守。然而,本教程介绍了一个不同的观点,提出了一个场景,当考虑到机械系统参数的可变性时,von Mises理论可能会显得更保守。在固体力学和材料强度的标准教科书中,这个经常被忽视的方面没有得到广泛的讨论。本教程旨在阐明von Mises准则产生比Tresca更小的等效应力的不可忽略的概率,从而更保守。它强调了将概率因素整合到固体应力分析中的重要性,为结构力学的教育提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tresca vs. von Mises: Which failure criterion is more conservative in a probabilistic context?
Abstract This tutorial examines the failure theories of Tresca and von Mises, both of which are crucial for designing metallic structures. Conventionally, Tresca is regarded as more conservative than von Mises from a deterministic perspective. This tutorial, however, introduces a different viewpoint, presenting a scenario where von Mises theory may appear more conservative when variability in the mechanical system parameters is considered. This often overlooked aspect is not extensively addressed in standard textbooks on solid mechanics and the strength of materials. The tutorial aims to shed light on the non-negligible probability where von Mises criterion yields a smaller equivalent stress than Tresca, thus being more conservative. It underscores the importance of integrating probabilistic considerations into stress analyses of solids, offering valuable insights for the education of structural mechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.80%
发文量
95
审稿时长
5.8 months
期刊介绍: All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信