利用智能电池放置提高现代仓库的效率

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Future Internet Pub Date : 2023-10-26 DOI:10.3390/fi15110353
Nikolaos Baras, Antonios Chatzisavvas, Dimitris Ziouzios, Ioannis Vanidis, Minas Dasygenis
{"title":"利用智能电池放置提高现代仓库的效率","authors":"Nikolaos Baras, Antonios Chatzisavvas, Dimitris Ziouzios, Ioannis Vanidis, Minas Dasygenis","doi":"10.3390/fi15110353","DOIUrl":null,"url":null,"abstract":"In the ever-evolving landscape of warehousing, the integration of unmanned ground vehicles (UGVs) has profoundly revolutionized operational efficiency. Despite this advancement, a key determinant of UGV productivity remains its energy management and battery placement strategies. While many studies explored optimizing the pathways within warehouses and determining ideal power station locales, there remains a gap in addressing the dynamic needs of energy-efficient UGVs operating in tandem. The current literature largely focuses on static designs, often overlooking the challenges of multi-UGV scenarios. This paper introduces a novel algorithm based on affinity propagation (AP) for smart battery and charging station placement in modern warehouses. The idea of the proposed algorithm is to divide the initial area into multiple sub-areas based on their traffic, and then identify the optimal battery location within each sub-area. A salient feature of this algorithm is its adeptness at determining the most strategic battery station placements, emphasizing uninterrupted operations and minimized downtimes. Through extensive evaluations in a synthesized realistic setting, our results underscore the algorithm’s proficiency in devising enhanced solutions within feasible time constraints, paving the way for more energy-efficient and cohesive UGV-driven warehouse systems.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"449 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Efficiency of Modern Warehouses Using Smart Battery Placement\",\"authors\":\"Nikolaos Baras, Antonios Chatzisavvas, Dimitris Ziouzios, Ioannis Vanidis, Minas Dasygenis\",\"doi\":\"10.3390/fi15110353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the ever-evolving landscape of warehousing, the integration of unmanned ground vehicles (UGVs) has profoundly revolutionized operational efficiency. Despite this advancement, a key determinant of UGV productivity remains its energy management and battery placement strategies. While many studies explored optimizing the pathways within warehouses and determining ideal power station locales, there remains a gap in addressing the dynamic needs of energy-efficient UGVs operating in tandem. The current literature largely focuses on static designs, often overlooking the challenges of multi-UGV scenarios. This paper introduces a novel algorithm based on affinity propagation (AP) for smart battery and charging station placement in modern warehouses. The idea of the proposed algorithm is to divide the initial area into multiple sub-areas based on their traffic, and then identify the optimal battery location within each sub-area. A salient feature of this algorithm is its adeptness at determining the most strategic battery station placements, emphasizing uninterrupted operations and minimized downtimes. Through extensive evaluations in a synthesized realistic setting, our results underscore the algorithm’s proficiency in devising enhanced solutions within feasible time constraints, paving the way for more energy-efficient and cohesive UGV-driven warehouse systems.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"449 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15110353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15110353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在不断发展的仓储领域,无人驾驶地面车辆(ugv)的集成已经深刻地改变了运营效率。尽管取得了这些进步,但决定UGV生产率的关键因素仍然是其能量管理和电池放置策略。虽然许多研究探索了优化仓库内的路径和确定理想的发电站位置,但在解决节能ugv串联运行的动态需求方面仍然存在差距。目前的文献主要集中在静态设计上,往往忽视了多ugv场景的挑战。提出了一种基于亲和性传播(affinity propagation, AP)的现代仓库智能电池与充电站布局新算法。该算法的思想是根据交通流量将初始区域划分为多个子区域,然后在每个子区域内确定最优电池位置。该算法的一个显著特点是它善于确定最具战略意义的电池站位置,强调不间断运行和最小化停机时间。通过在综合现实环境中的广泛评估,我们的结果强调了算法在可行时间限制内设计增强解决方案的熟练程度,为更节能和更有凝聚力的ugv驱动仓库系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Efficiency of Modern Warehouses Using Smart Battery Placement
In the ever-evolving landscape of warehousing, the integration of unmanned ground vehicles (UGVs) has profoundly revolutionized operational efficiency. Despite this advancement, a key determinant of UGV productivity remains its energy management and battery placement strategies. While many studies explored optimizing the pathways within warehouses and determining ideal power station locales, there remains a gap in addressing the dynamic needs of energy-efficient UGVs operating in tandem. The current literature largely focuses on static designs, often overlooking the challenges of multi-UGV scenarios. This paper introduces a novel algorithm based on affinity propagation (AP) for smart battery and charging station placement in modern warehouses. The idea of the proposed algorithm is to divide the initial area into multiple sub-areas based on their traffic, and then identify the optimal battery location within each sub-area. A salient feature of this algorithm is its adeptness at determining the most strategic battery station placements, emphasizing uninterrupted operations and minimized downtimes. Through extensive evaluations in a synthesized realistic setting, our results underscore the algorithm’s proficiency in devising enhanced solutions within feasible time constraints, paving the way for more energy-efficient and cohesive UGV-driven warehouse systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信