易于处理的二元竞赛

IF 1.1 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Priel Levy, David Sarne, Yonatan Aumann
{"title":"易于处理的二元竞赛","authors":"Priel Levy, David Sarne, Yonatan Aumann","doi":"10.1145/3630109","DOIUrl":null,"url":null,"abstract":"Much of the work on multi-agent contests is focused on determining the equilibrium behavior of contestants. This capability is essential for the principal for choosing the optimal parameters for the contest (e.g. prize amount). As it turns out, many contests exhibit not one, but many possible equilibria, hence precluding contest design optimization and contestants’ behavior prediction. In this paper we examine a variation of the classic contest that alleviates this problem by having contestants make the decisions sequentially rather than in parallel. We study this model in the setting of a binary contest , wherein contestants only choose whether or not to participate, while their performance level is exogenously set. We show that by switching to the sequential mechanism not only does there emerge a unique equilibrium behavior, but also that the principal can design this behavior to be as good, and, at times, better, than any pure-strategy equilibrium of the parallel setting (assuming the principal’s profit is either the maximum performance or the sum of performances). We also show that in the sequential setting enables the optimal prize, which is inherently a continuous parameter, can be effectively computed and reduced to a set of discrete values to be evaluated. The theoretical analysis is complemented by comprehensive experiments with people over Amazon Mechanical Turk. Here, we find that the modified mechanism offers great benefit for the principal in terms of an increased over-participation in the contest (compared to theoretical expectations). The effect on the principal average profit, however, depends on its goal in the contest – when benefiting from the maximum performance the modified mechanism results in increased average profit, while when benefiting from the sum of performances, it is preferred to stay with the original (parallel) contest.","PeriodicalId":42216,"journal":{"name":"ACM Transactions on Economics and Computation","volume":"12 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tractable Binary Contests\",\"authors\":\"Priel Levy, David Sarne, Yonatan Aumann\",\"doi\":\"10.1145/3630109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Much of the work on multi-agent contests is focused on determining the equilibrium behavior of contestants. This capability is essential for the principal for choosing the optimal parameters for the contest (e.g. prize amount). As it turns out, many contests exhibit not one, but many possible equilibria, hence precluding contest design optimization and contestants’ behavior prediction. In this paper we examine a variation of the classic contest that alleviates this problem by having contestants make the decisions sequentially rather than in parallel. We study this model in the setting of a binary contest , wherein contestants only choose whether or not to participate, while their performance level is exogenously set. We show that by switching to the sequential mechanism not only does there emerge a unique equilibrium behavior, but also that the principal can design this behavior to be as good, and, at times, better, than any pure-strategy equilibrium of the parallel setting (assuming the principal’s profit is either the maximum performance or the sum of performances). We also show that in the sequential setting enables the optimal prize, which is inherently a continuous parameter, can be effectively computed and reduced to a set of discrete values to be evaluated. The theoretical analysis is complemented by comprehensive experiments with people over Amazon Mechanical Turk. Here, we find that the modified mechanism offers great benefit for the principal in terms of an increased over-participation in the contest (compared to theoretical expectations). The effect on the principal average profit, however, depends on its goal in the contest – when benefiting from the maximum performance the modified mechanism results in increased average profit, while when benefiting from the sum of performances, it is preferred to stay with the original (parallel) contest.\",\"PeriodicalId\":42216,\"journal\":{\"name\":\"ACM Transactions on Economics and Computation\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Economics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3630109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3630109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

许多关于多智能体竞赛的研究都集中在确定参赛者的均衡行为上。这种能力对于校长选择比赛的最佳参数(例如奖金金额)至关重要。事实证明,许多竞赛表现出不是一个,而是许多可能的均衡,因此排除了竞赛设计优化和参赛者行为预测。在本文中,我们研究了经典比赛的一种变体,通过让参赛者顺序而不是并行地做出决定来缓解这个问题。我们在二元竞赛的背景下研究这个模型,二元竞赛中,参赛者只选择是否参加,而他们的表现水平是外生设定的。我们表明,通过切换到顺序机制,不仅会出现一种独特的均衡行为,而且委托人可以设计这种行为,使其与并行设置的任何纯策略均衡一样好,有时甚至更好(假设委托人的利润是最大绩效或绩效总和)。我们还表明,在顺序设置下,最优奖励(本质上是一个连续参数)可以有效地计算并简化为一组待评估的离散值。理论分析得到了在亚马逊土耳其机器人上进行的全面实验的补充。在这里,我们发现修改后的机制在增加竞争的过度参与方面为委托人提供了巨大的利益(与理论预期相比)。然而,对本金平均利润的影响取决于其在竞争中的目标,当受益于最大绩效时,修改后的机制导致平均利润增加,而当受益于绩效总和时,则倾向于保持原始(平行)竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tractable Binary Contests
Much of the work on multi-agent contests is focused on determining the equilibrium behavior of contestants. This capability is essential for the principal for choosing the optimal parameters for the contest (e.g. prize amount). As it turns out, many contests exhibit not one, but many possible equilibria, hence precluding contest design optimization and contestants’ behavior prediction. In this paper we examine a variation of the classic contest that alleviates this problem by having contestants make the decisions sequentially rather than in parallel. We study this model in the setting of a binary contest , wherein contestants only choose whether or not to participate, while their performance level is exogenously set. We show that by switching to the sequential mechanism not only does there emerge a unique equilibrium behavior, but also that the principal can design this behavior to be as good, and, at times, better, than any pure-strategy equilibrium of the parallel setting (assuming the principal’s profit is either the maximum performance or the sum of performances). We also show that in the sequential setting enables the optimal prize, which is inherently a continuous parameter, can be effectively computed and reduced to a set of discrete values to be evaluated. The theoretical analysis is complemented by comprehensive experiments with people over Amazon Mechanical Turk. Here, we find that the modified mechanism offers great benefit for the principal in terms of an increased over-participation in the contest (compared to theoretical expectations). The effect on the principal average profit, however, depends on its goal in the contest – when benefiting from the maximum performance the modified mechanism results in increased average profit, while when benefiting from the sum of performances, it is preferred to stay with the original (parallel) contest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Economics and Computation
ACM Transactions on Economics and Computation COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
3.80
自引率
0.00%
发文量
11
期刊介绍: The ACM Transactions on Economics and Computation welcomes submissions of the highest quality that concern the intersection of computer science and economics. Of interest to the journal is any topic relevant to both economists and computer scientists, including but not limited to the following: Agents in networks Algorithmic game theory Computation of equilibria Computational social choice Cost of strategic behavior and cost of decentralization ("price of anarchy") Design and analysis of electronic markets Economics of computational advertising Electronic commerce Learning in games and markets Mechanism design Paid search auctions Privacy Recommendation / reputation / trust systems Systems resilient against malicious agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信