极小Z2 -超空间上的积分与空间的出现

Naruhiko Aizawa, Ren Ito
{"title":"极小Z2 -超空间上的积分与空间的出现","authors":"Naruhiko Aizawa, Ren Ito","doi":"10.1088/1751-8121/ad076e","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the possibilities of integration on the minimal Z 2 2 -superspace. Two definitions are taken from the works by Poncin and Schouten and we examine their generalizations. It is shown that these definitions impose some restrictions on the integrable functions. We then introduce a new definition of integral, which is inspired by our previous work, and show that the definition does not impose restrictions on the integrable functions. An interesting feature of this definition is the emergence of a spatial coordinate which means that the integral is defined on R <sup>2 despite the fact that the (0,0) part of the minimal Z 2 2 -superspace is R","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"42 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integration on minimal Z<sub>2</sub> <sup>2</sup>-superspace and emergence of space\",\"authors\":\"Naruhiko Aizawa, Ren Ito\",\"doi\":\"10.1088/1751-8121/ad076e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate the possibilities of integration on the minimal Z 2 2 -superspace. Two definitions are taken from the works by Poncin and Schouten and we examine their generalizations. It is shown that these definitions impose some restrictions on the integrable functions. We then introduce a new definition of integral, which is inspired by our previous work, and show that the definition does not impose restrictions on the integrable functions. An interesting feature of this definition is the emergence of a spatial coordinate which means that the integral is defined on R <sup>2 despite the fact that the (0,0) part of the minimal Z 2 2 -superspace is R\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"42 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad076e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad076e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究极小z22 -超空间上积分的可能性。从Poncin和Schouten的著作中提取了两个定义,并对他们的概括进行了检验。证明了这些定义对可积函数有一定的限制。在前人研究的启发下,引入了积分的新定义,并证明了该定义对可积函数没有限制。这个定义的一个有趣的特征是空间坐标的出现,这意味着积分是在R < supgt;2上定义的,尽管最小z22 -超空间的(0,0)部分是R
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration on minimal Z2 2-superspace and emergence of space
Abstract We investigate the possibilities of integration on the minimal Z 2 2 -superspace. Two definitions are taken from the works by Poncin and Schouten and we examine their generalizations. It is shown that these definitions impose some restrictions on the integrable functions. We then introduce a new definition of integral, which is inspired by our previous work, and show that the definition does not impose restrictions on the integrable functions. An interesting feature of this definition is the emergence of a spatial coordinate which means that the integral is defined on R 2 despite the fact that the (0,0) part of the minimal Z 2 2 -superspace is R
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信