一类一元函数和解析函数玻尔现象的调和模拟

IF 0.3 4区 数学 Q4 MATHEMATICS
Molla Basir Ahamed, Vasudevarao Allu
{"title":"一类一元函数和解析函数玻尔现象的调和模拟","authors":"Molla Basir Ahamed, Vasudevarao Allu","doi":"10.7146/math.scand.a-139645","DOIUrl":null,"url":null,"abstract":"A class $ \\mathcal {F} $ consisting of analytic functions $ f(z)=\\sum _{n=0}^{\\infty }a_nz^n $ in the unit disk $ \\mathbb {D}=\\{z\\in \\mathbb {C}:\\lvert z\\rvert <1\\} $ is said to satisfy Bohr phenomenon if there exists an $ r_f>0 $ such that $$ \\sum _{n=1}^{\\infty }\\lvert a_n\\rvert r^n\\leq d(f(0),\\partial \\mathbb {D}) $$ for every function $ f\\in \\mathcal {F} $, and $\\lvert z\\rvert =r\\leq r_f $. The largest radius $ r_f $ is known as the Bohr radius and the inequality $ \\sum _{n=1}^{\\infty }\\lvert a_n\\rvert r^n\\leq d(f(0),\\partial f(\\mathbb {D})) $ is known as the Bohr inequality for the class $ \\mathcal {F} $, where $d$ is the Euclidean distance. In this paper, we prove several sharp improved and refined versions of Bohr-type inequalities in terms of area measure of functions in a certain subclass of analytic and univalent (i.e. one-to-one) functions. As a consequence, we obtain several interesting corollaries on the Bohr-type inequality for the class which are the harmonic analogue of some Bohr-type inequality for the class of analytic functions.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":"28 9","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic analogue of Bohr phenomenon of certain classes of univalent and analytic functions\",\"authors\":\"Molla Basir Ahamed, Vasudevarao Allu\",\"doi\":\"10.7146/math.scand.a-139645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class $ \\\\mathcal {F} $ consisting of analytic functions $ f(z)=\\\\sum _{n=0}^{\\\\infty }a_nz^n $ in the unit disk $ \\\\mathbb {D}=\\\\{z\\\\in \\\\mathbb {C}:\\\\lvert z\\\\rvert <1\\\\} $ is said to satisfy Bohr phenomenon if there exists an $ r_f>0 $ such that $$ \\\\sum _{n=1}^{\\\\infty }\\\\lvert a_n\\\\rvert r^n\\\\leq d(f(0),\\\\partial \\\\mathbb {D}) $$ for every function $ f\\\\in \\\\mathcal {F} $, and $\\\\lvert z\\\\rvert =r\\\\leq r_f $. The largest radius $ r_f $ is known as the Bohr radius and the inequality $ \\\\sum _{n=1}^{\\\\infty }\\\\lvert a_n\\\\rvert r^n\\\\leq d(f(0),\\\\partial f(\\\\mathbb {D})) $ is known as the Bohr inequality for the class $ \\\\mathcal {F} $, where $d$ is the Euclidean distance. In this paper, we prove several sharp improved and refined versions of Bohr-type inequalities in terms of area measure of functions in a certain subclass of analytic and univalent (i.e. one-to-one) functions. As a consequence, we obtain several interesting corollaries on the Bohr-type inequality for the class which are the harmonic analogue of some Bohr-type inequality for the class of analytic functions.\",\"PeriodicalId\":49873,\"journal\":{\"name\":\"Mathematica Scandinavica\",\"volume\":\"28 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Scandinavica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-139645\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/math.scand.a-139645","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在单位圆盘$ \mathbb {D}=\{z\in \mathbb {C}:\lvert z\rvert <1\} $中,由解析函数$ f(z)=\sum _{n=0}^{\infty }a_nz^n $组成的类$ \mathcal {F} $满足玻尔现象,如果存在一个$ r_f>0 $,使得$$ \sum _{n=1}^{\infty }\lvert a_n\rvert r^n\leq d(f(0),\partial \mathbb {D}) $$对于每个函数$ f\in \mathcal {F} $和$\lvert z\rvert =r\leq r_f $。最大的半径$ r_f $被称为玻尔半径不等式$ \sum _{n=1}^{\infty }\lvert a_n\rvert r^n\leq d(f(0),\partial f(\mathbb {D})) $被称为玻尔不等式对于$ \mathcal {F} $类,其中$d$是欧几里得距离。本文从函数的面积测度的角度,证明了解析一元函数的子类(即一对一函数)中玻尔不等式的几个改进和改进版本。因此,我们得到了该类玻尔不等式的几个有趣的推论,这些推论是解析函数类玻尔不等式的调和类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic analogue of Bohr phenomenon of certain classes of univalent and analytic functions
A class $ \mathcal {F} $ consisting of analytic functions $ f(z)=\sum _{n=0}^{\infty }a_nz^n $ in the unit disk $ \mathbb {D}=\{z\in \mathbb {C}:\lvert z\rvert <1\} $ is said to satisfy Bohr phenomenon if there exists an $ r_f>0 $ such that $$ \sum _{n=1}^{\infty }\lvert a_n\rvert r^n\leq d(f(0),\partial \mathbb {D}) $$ for every function $ f\in \mathcal {F} $, and $\lvert z\rvert =r\leq r_f $. The largest radius $ r_f $ is known as the Bohr radius and the inequality $ \sum _{n=1}^{\infty }\lvert a_n\rvert r^n\leq d(f(0),\partial f(\mathbb {D})) $ is known as the Bohr inequality for the class $ \mathcal {F} $, where $d$ is the Euclidean distance. In this paper, we prove several sharp improved and refined versions of Bohr-type inequalities in terms of area measure of functions in a certain subclass of analytic and univalent (i.e. one-to-one) functions. As a consequence, we obtain several interesting corollaries on the Bohr-type inequality for the class which are the harmonic analogue of some Bohr-type inequality for the class of analytic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica Scandinavica
Mathematica Scandinavica 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length. Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months. All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信