一类一元函数和解析函数玻尔现象的调和模拟

Pub Date : 2023-10-26 DOI:10.7146/math.scand.a-139645
Molla Basir Ahamed, Vasudevarao Allu
{"title":"一类一元函数和解析函数玻尔现象的调和模拟","authors":"Molla Basir Ahamed, Vasudevarao Allu","doi":"10.7146/math.scand.a-139645","DOIUrl":null,"url":null,"abstract":"A class $ \\mathcal {F} $ consisting of analytic functions $ f(z)=\\sum _{n=0}^{\\infty }a_nz^n $ in the unit disk $ \\mathbb {D}=\\{z\\in \\mathbb {C}:\\lvert z\\rvert <1\\} $ is said to satisfy Bohr phenomenon if there exists an $ r_f>0 $ such that $$ \\sum _{n=1}^{\\infty }\\lvert a_n\\rvert r^n\\leq d(f(0),\\partial \\mathbb {D}) $$ for every function $ f\\in \\mathcal {F} $, and $\\lvert z\\rvert =r\\leq r_f $. The largest radius $ r_f $ is known as the Bohr radius and the inequality $ \\sum _{n=1}^{\\infty }\\lvert a_n\\rvert r^n\\leq d(f(0),\\partial f(\\mathbb {D})) $ is known as the Bohr inequality for the class $ \\mathcal {F} $, where $d$ is the Euclidean distance. In this paper, we prove several sharp improved and refined versions of Bohr-type inequalities in terms of area measure of functions in a certain subclass of analytic and univalent (i.e. one-to-one) functions. As a consequence, we obtain several interesting corollaries on the Bohr-type inequality for the class which are the harmonic analogue of some Bohr-type inequality for the class of analytic functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic analogue of Bohr phenomenon of certain classes of univalent and analytic functions\",\"authors\":\"Molla Basir Ahamed, Vasudevarao Allu\",\"doi\":\"10.7146/math.scand.a-139645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class $ \\\\mathcal {F} $ consisting of analytic functions $ f(z)=\\\\sum _{n=0}^{\\\\infty }a_nz^n $ in the unit disk $ \\\\mathbb {D}=\\\\{z\\\\in \\\\mathbb {C}:\\\\lvert z\\\\rvert <1\\\\} $ is said to satisfy Bohr phenomenon if there exists an $ r_f>0 $ such that $$ \\\\sum _{n=1}^{\\\\infty }\\\\lvert a_n\\\\rvert r^n\\\\leq d(f(0),\\\\partial \\\\mathbb {D}) $$ for every function $ f\\\\in \\\\mathcal {F} $, and $\\\\lvert z\\\\rvert =r\\\\leq r_f $. The largest radius $ r_f $ is known as the Bohr radius and the inequality $ \\\\sum _{n=1}^{\\\\infty }\\\\lvert a_n\\\\rvert r^n\\\\leq d(f(0),\\\\partial f(\\\\mathbb {D})) $ is known as the Bohr inequality for the class $ \\\\mathcal {F} $, where $d$ is the Euclidean distance. In this paper, we prove several sharp improved and refined versions of Bohr-type inequalities in terms of area measure of functions in a certain subclass of analytic and univalent (i.e. one-to-one) functions. As a consequence, we obtain several interesting corollaries on the Bohr-type inequality for the class which are the harmonic analogue of some Bohr-type inequality for the class of analytic functions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-139645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/math.scand.a-139645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在单位圆盘$ \mathbb {D}=\{z\in \mathbb {C}:\lvert z\rvert <1\} $中,由解析函数$ f(z)=\sum _{n=0}^{\infty }a_nz^n $组成的类$ \mathcal {F} $满足玻尔现象,如果存在一个$ r_f>0 $,使得$$ \sum _{n=1}^{\infty }\lvert a_n\rvert r^n\leq d(f(0),\partial \mathbb {D}) $$对于每个函数$ f\in \mathcal {F} $和$\lvert z\rvert =r\leq r_f $。最大的半径$ r_f $被称为玻尔半径不等式$ \sum _{n=1}^{\infty }\lvert a_n\rvert r^n\leq d(f(0),\partial f(\mathbb {D})) $被称为玻尔不等式对于$ \mathcal {F} $类,其中$d$是欧几里得距离。本文从函数的面积测度的角度,证明了解析一元函数的子类(即一对一函数)中玻尔不等式的几个改进和改进版本。因此,我们得到了该类玻尔不等式的几个有趣的推论,这些推论是解析函数类玻尔不等式的调和类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Harmonic analogue of Bohr phenomenon of certain classes of univalent and analytic functions
A class $ \mathcal {F} $ consisting of analytic functions $ f(z)=\sum _{n=0}^{\infty }a_nz^n $ in the unit disk $ \mathbb {D}=\{z\in \mathbb {C}:\lvert z\rvert <1\} $ is said to satisfy Bohr phenomenon if there exists an $ r_f>0 $ such that $$ \sum _{n=1}^{\infty }\lvert a_n\rvert r^n\leq d(f(0),\partial \mathbb {D}) $$ for every function $ f\in \mathcal {F} $, and $\lvert z\rvert =r\leq r_f $. The largest radius $ r_f $ is known as the Bohr radius and the inequality $ \sum _{n=1}^{\infty }\lvert a_n\rvert r^n\leq d(f(0),\partial f(\mathbb {D})) $ is known as the Bohr inequality for the class $ \mathcal {F} $, where $d$ is the Euclidean distance. In this paper, we prove several sharp improved and refined versions of Bohr-type inequalities in terms of area measure of functions in a certain subclass of analytic and univalent (i.e. one-to-one) functions. As a consequence, we obtain several interesting corollaries on the Bohr-type inequality for the class which are the harmonic analogue of some Bohr-type inequality for the class of analytic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信