{"title":"基于马尔可夫模型的无人地面车辆状态监测与故障检测系统","authors":"Kalpit Vadnerkar, Pierluigi Pisu","doi":"10.36001/phmconf.2023.v15i1.3539","DOIUrl":null,"url":null,"abstract":"This research presents a novel fault detection and diagnostics system for unmanned ground vehicles (UGVs) by combining Markov models representing the vehicle's navigation, kinematic behavior, and vehicle dynamics systems. Existing studies do not specifically address the challenges related to UGVs and their complex subsystems or the incorporation of weather and environmental condition data. The proposed system leverages environmental and weather condition data to monitor the UGV's state and detect anomalies in its behavior. By predicting the probability of faults such as collisions, sensor damage, and other malfunctions, the system aims to enhance the safety, reliability, and performance of UGVs. The research will demonstrate the effectiveness of the proposed methodology through case studies and performance evaluation, highlighting its potential application in various real-world scenarios. This work contributes to the ongoing research in prognostics and health management, particularly for autonomous systems, by providing a new approach to fault detection and diagnostics in UGVs.","PeriodicalId":91951,"journal":{"name":"Proceedings of the Annual Conference of the Prognostics and Health Management Society. Prognostics and Health Management Society. Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle State Monitoring and Fault Detection System for Unmanned Ground Vehicles (UGV) using Markov Models\",\"authors\":\"Kalpit Vadnerkar, Pierluigi Pisu\",\"doi\":\"10.36001/phmconf.2023.v15i1.3539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research presents a novel fault detection and diagnostics system for unmanned ground vehicles (UGVs) by combining Markov models representing the vehicle's navigation, kinematic behavior, and vehicle dynamics systems. Existing studies do not specifically address the challenges related to UGVs and their complex subsystems or the incorporation of weather and environmental condition data. The proposed system leverages environmental and weather condition data to monitor the UGV's state and detect anomalies in its behavior. By predicting the probability of faults such as collisions, sensor damage, and other malfunctions, the system aims to enhance the safety, reliability, and performance of UGVs. The research will demonstrate the effectiveness of the proposed methodology through case studies and performance evaluation, highlighting its potential application in various real-world scenarios. This work contributes to the ongoing research in prognostics and health management, particularly for autonomous systems, by providing a new approach to fault detection and diagnostics in UGVs.\",\"PeriodicalId\":91951,\"journal\":{\"name\":\"Proceedings of the Annual Conference of the Prognostics and Health Management Society. Prognostics and Health Management Society. Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Annual Conference of the Prognostics and Health Management Society. Prognostics and Health Management Society. Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/phmconf.2023.v15i1.3539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Annual Conference of the Prognostics and Health Management Society. Prognostics and Health Management Society. Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phmconf.2023.v15i1.3539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vehicle State Monitoring and Fault Detection System for Unmanned Ground Vehicles (UGV) using Markov Models
This research presents a novel fault detection and diagnostics system for unmanned ground vehicles (UGVs) by combining Markov models representing the vehicle's navigation, kinematic behavior, and vehicle dynamics systems. Existing studies do not specifically address the challenges related to UGVs and their complex subsystems or the incorporation of weather and environmental condition data. The proposed system leverages environmental and weather condition data to monitor the UGV's state and detect anomalies in its behavior. By predicting the probability of faults such as collisions, sensor damage, and other malfunctions, the system aims to enhance the safety, reliability, and performance of UGVs. The research will demonstrate the effectiveness of the proposed methodology through case studies and performance evaluation, highlighting its potential application in various real-world scenarios. This work contributes to the ongoing research in prognostics and health management, particularly for autonomous systems, by providing a new approach to fault detection and diagnostics in UGVs.