双线性形式,舒尔乘子,完全有界性和对偶性

Pub Date : 2023-10-26 DOI:10.7146/math.scand.a-140205
Erik Christensen
{"title":"双线性形式,舒尔乘子,完全有界性和对偶性","authors":"Erik Christensen","doi":"10.7146/math.scand.a-140205","DOIUrl":null,"url":null,"abstract":"Grothendieck's inequalities for operators and bilinear forms imply some factorization results for complex $m \\times n$ matrices. Based on the theory of operator spaces and completely bounded maps we present norm optimal versions of these results and two norm optimal factorization results related to the Schur product. We show that the spaces of bilinear forms and of Schur multipliers are conjugate duals to each other with respect to their completely bounded norms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bilinear forms, Schur multipliers, complete boundedness and duality\",\"authors\":\"Erik Christensen\",\"doi\":\"10.7146/math.scand.a-140205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grothendieck's inequalities for operators and bilinear forms imply some factorization results for complex $m \\\\times n$ matrices. Based on the theory of operator spaces and completely bounded maps we present norm optimal versions of these results and two norm optimal factorization results related to the Schur product. We show that the spaces of bilinear forms and of Schur multipliers are conjugate duals to each other with respect to their completely bounded norms.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-140205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/math.scand.a-140205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

关于算子和双线性形式的Grothendieck不等式暗示了复数$m \乘以n$矩阵的一些分解结果。基于算子空间和完全有界映射的理论,我们给出了这些结果的范数最优版本和两个与舒尔积相关的范数最优分解结果。我们证明了双线性形式的空间和舒尔乘子的空间在它们的完全有界范数方面是相互共轭对偶的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bilinear forms, Schur multipliers, complete boundedness and duality
Grothendieck's inequalities for operators and bilinear forms imply some factorization results for complex $m \times n$ matrices. Based on the theory of operator spaces and completely bounded maps we present norm optimal versions of these results and two norm optimal factorization results related to the Schur product. We show that the spaces of bilinear forms and of Schur multipliers are conjugate duals to each other with respect to their completely bounded norms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信