{"title":"双线性形式,舒尔乘子,完全有界性和对偶性","authors":"Erik Christensen","doi":"10.7146/math.scand.a-140205","DOIUrl":null,"url":null,"abstract":"Grothendieck's inequalities for operators and bilinear forms imply some factorization results for complex $m \\times n$ matrices. Based on the theory of operator spaces and completely bounded maps we present norm optimal versions of these results and two norm optimal factorization results related to the Schur product. We show that the spaces of bilinear forms and of Schur multipliers are conjugate duals to each other with respect to their completely bounded norms.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":"18 06","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bilinear forms, Schur multipliers, complete boundedness and duality\",\"authors\":\"Erik Christensen\",\"doi\":\"10.7146/math.scand.a-140205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grothendieck's inequalities for operators and bilinear forms imply some factorization results for complex $m \\\\times n$ matrices. Based on the theory of operator spaces and completely bounded maps we present norm optimal versions of these results and two norm optimal factorization results related to the Schur product. We show that the spaces of bilinear forms and of Schur multipliers are conjugate duals to each other with respect to their completely bounded norms.\",\"PeriodicalId\":49873,\"journal\":{\"name\":\"Mathematica Scandinavica\",\"volume\":\"18 06\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Scandinavica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-140205\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/math.scand.a-140205","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bilinear forms, Schur multipliers, complete boundedness and duality
Grothendieck's inequalities for operators and bilinear forms imply some factorization results for complex $m \times n$ matrices. Based on the theory of operator spaces and completely bounded maps we present norm optimal versions of these results and two norm optimal factorization results related to the Schur product. We show that the spaces of bilinear forms and of Schur multipliers are conjugate duals to each other with respect to their completely bounded norms.
期刊介绍:
Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length.
Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months.
All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.