昂贵优化问题的代理集成辅助超启发式算法

IF 2.9 4区 计算机科学
Rui Zhong, Jun Yu, Chao Zhang, Masaharu Munetomo
{"title":"昂贵优化问题的代理集成辅助超启发式算法","authors":"Rui Zhong, Jun Yu, Chao Zhang, Masaharu Munetomo","doi":"10.1007/s44196-023-00346-y","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a novel surrogate ensemble-assisted hyper-heuristic algorithm (SEA-HHA) to solve expensive optimization problems (EOPs). A representative HHA consists of two parts: the low-level and the high-level components. In the low-level component, we regard the surrogate-assisted technique as a type of search strategy and design the four search strategy archives: exploration strategy archive, exploitation strategy archive, surrogate-assisted estimation archive, and mutation strategy archive as low-level heuristics (LLHs), each archive contains one or more search strategies. Once the surrogate-assisted estimation archive is activated to generate the offspring individual, SEA-HHA first selects the dataset for model construction from three principles: All Data , Recent Data , and Neighbor , which correspond to the global and the local surrogate model, respectively. Then, the dataset is randomly divided into training and validation data, and the most accurate model built by polynomial regression (PR), support vector regression (SVR), and Gaussian process regression (GPR) cooperates with the infill sampling criterion is employed for solution estimation. In the high-level component, we design a random selection function based on the pre-defined probabilities to manipulate a set of LLHs. In numerical experiments, we compare SEA-HHA with six optimization techniques on 5-D, 10-D, and 30-D CEC2013 benchmark functions and three engineering optimization problems with only 1000 fitness evaluation times (FEs). The experimental and statistical results show that our proposed SEA-HHA has broad prospects for dealing with EOPs.","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"3 9","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surrogate Ensemble-Assisted Hyper-Heuristic Algorithm for Expensive Optimization Problems\",\"authors\":\"Rui Zhong, Jun Yu, Chao Zhang, Masaharu Munetomo\",\"doi\":\"10.1007/s44196-023-00346-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper proposes a novel surrogate ensemble-assisted hyper-heuristic algorithm (SEA-HHA) to solve expensive optimization problems (EOPs). A representative HHA consists of two parts: the low-level and the high-level components. In the low-level component, we regard the surrogate-assisted technique as a type of search strategy and design the four search strategy archives: exploration strategy archive, exploitation strategy archive, surrogate-assisted estimation archive, and mutation strategy archive as low-level heuristics (LLHs), each archive contains one or more search strategies. Once the surrogate-assisted estimation archive is activated to generate the offspring individual, SEA-HHA first selects the dataset for model construction from three principles: All Data , Recent Data , and Neighbor , which correspond to the global and the local surrogate model, respectively. Then, the dataset is randomly divided into training and validation data, and the most accurate model built by polynomial regression (PR), support vector regression (SVR), and Gaussian process regression (GPR) cooperates with the infill sampling criterion is employed for solution estimation. In the high-level component, we design a random selection function based on the pre-defined probabilities to manipulate a set of LLHs. In numerical experiments, we compare SEA-HHA with six optimization techniques on 5-D, 10-D, and 30-D CEC2013 benchmark functions and three engineering optimization problems with only 1000 fitness evaluation times (FEs). The experimental and statistical results show that our proposed SEA-HHA has broad prospects for dealing with EOPs.\",\"PeriodicalId\":54967,\"journal\":{\"name\":\"International Journal of Computational Intelligence Systems\",\"volume\":\"3 9\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44196-023-00346-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44196-023-00346-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了一种求解昂贵优化问题的代理集成辅助超启发式算法(SEA-HHA)。典型的HHA由两部分组成:低级和高级组件。在低级组件中,我们将代理辅助技术作为一种搜索策略,并设计了四个搜索策略档案:探索策略档案、利用策略档案、代理辅助估计档案和突变策略档案作为低级启发式(LLHs),每个档案包含一个或多个搜索策略。一旦代理辅助估计存档被激活以生成后代个体,SEA-HHA首先从三个原则中选择用于模型构建的数据集:所有数据、最近数据和邻居,它们分别对应于全局和局部代理模型。然后,将数据集随机分为训练数据和验证数据,利用多项式回归(PR)、支持向量回归(SVR)和高斯过程回归(GPR)结合填充采样准则建立最精确的模型进行解估计。在高级组件中,我们设计了一个基于预定义概率的随机选择函数来操纵一组llh。在数值实验中,我们将SEA-HHA与5-D、10-D和30-D CEC2013基准函数的6种优化技术以及3种适应度评估次数仅为1000次的工程优化问题进行了比较。实验和统计结果表明,我们提出的SEA-HHA在处理EOPs方面具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surrogate Ensemble-Assisted Hyper-Heuristic Algorithm for Expensive Optimization Problems
Abstract This paper proposes a novel surrogate ensemble-assisted hyper-heuristic algorithm (SEA-HHA) to solve expensive optimization problems (EOPs). A representative HHA consists of two parts: the low-level and the high-level components. In the low-level component, we regard the surrogate-assisted technique as a type of search strategy and design the four search strategy archives: exploration strategy archive, exploitation strategy archive, surrogate-assisted estimation archive, and mutation strategy archive as low-level heuristics (LLHs), each archive contains one or more search strategies. Once the surrogate-assisted estimation archive is activated to generate the offspring individual, SEA-HHA first selects the dataset for model construction from three principles: All Data , Recent Data , and Neighbor , which correspond to the global and the local surrogate model, respectively. Then, the dataset is randomly divided into training and validation data, and the most accurate model built by polynomial regression (PR), support vector regression (SVR), and Gaussian process regression (GPR) cooperates with the infill sampling criterion is employed for solution estimation. In the high-level component, we design a random selection function based on the pre-defined probabilities to manipulate a set of LLHs. In numerical experiments, we compare SEA-HHA with six optimization techniques on 5-D, 10-D, and 30-D CEC2013 benchmark functions and three engineering optimization problems with only 1000 fitness evaluation times (FEs). The experimental and statistical results show that our proposed SEA-HHA has broad prospects for dealing with EOPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Intelligence Systems
International Journal of Computational Intelligence Systems 工程技术-计算机:跨学科应用
自引率
3.40%
发文量
94
期刊介绍: The International Journal of Computational Intelligence Systems publishes original research on all aspects of applied computational intelligence, especially targeting papers demonstrating the use of techniques and methods originating from computational intelligence theory. The core theories of computational intelligence are fuzzy logic, neural networks, evolutionary computation and probabilistic reasoning. The journal publishes only articles related to the use of computational intelligence and broadly covers the following topics: -Autonomous reasoning- Bio-informatics- Cloud computing- Condition monitoring- Data science- Data mining- Data visualization- Decision support systems- Fault diagnosis- Intelligent information retrieval- Human-machine interaction and interfaces- Image processing- Internet and networks- Noise analysis- Pattern recognition- Prediction systems- Power (nuclear) safety systems- Process and system control- Real-time systems- Risk analysis and safety-related issues- Robotics- Signal and image processing- IoT and smart environments- Systems integration- System control- System modelling and optimization- Telecommunications- Time series prediction- Warning systems- Virtual reality- Web intelligence- Deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信