非约化几何不变理论与双曲性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gergely Bérczi, Frances Kirwan
{"title":"非约化几何不变理论与双曲性","authors":"Gergely Bérczi, Frances Kirwan","doi":"10.1007/s00222-023-01219-z","DOIUrl":null,"url":null,"abstract":"Abstract The Green–Griffiths–Lang and Kobayashi hyperbolicity conjectures for generic hypersurfaces of polynomial degree are proved using intersection theory for non-reductive geometric invariant theoretic quotients and recent work of Riedl and Yang.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Non-reductive geometric invariant theory and hyperbolicity\",\"authors\":\"Gergely Bérczi, Frances Kirwan\",\"doi\":\"10.1007/s00222-023-01219-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Green–Griffiths–Lang and Kobayashi hyperbolicity conjectures for generic hypersurfaces of polynomial degree are proved using intersection theory for non-reductive geometric invariant theoretic quotients and recent work of Riedl and Yang.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-023-01219-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00222-023-01219-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 11

摘要

利用非约化几何不变理论商的交理论和Riedl和Yang的最新工作证明了多项式次一般超曲面的Green-Griffiths-Lang和Kobayashi双曲猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-reductive geometric invariant theory and hyperbolicity

Non-reductive geometric invariant theory and hyperbolicity
Abstract The Green–Griffiths–Lang and Kobayashi hyperbolicity conjectures for generic hypersurfaces of polynomial degree are proved using intersection theory for non-reductive geometric invariant theoretic quotients and recent work of Riedl and Yang.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信