{"title":"非约商的矩映射与上同调","authors":"Gergely Bérczi, Frances Kirwan","doi":"10.1007/s00222-023-01218-0","DOIUrl":null,"url":null,"abstract":"Abstract Let $H$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>H</mml:mi> </mml:math> be a complex linear algebraic group with internally graded unipotent radical acting on a complex projective variety $X$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>X</mml:mi> </mml:math> . Given an ample linearisation of the action and an associated Fubini–Study Kähler form which is invariant for a maximal compact subgroup $Q$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Q</mml:mi> </mml:math> of $H$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>H</mml:mi> </mml:math> , we define a notion of moment map for the action of $H$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>H</mml:mi> </mml:math> , and under suitable conditions (that the linearisation is well-adapted and semistability coincides with stability) we describe the (non-reductive) GIT quotient $X/\\!/H$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:mi>H</mml:mi> </mml:math> introduced in (Bérczi et al. in J. Topol. 11(3):826–855, 2018) in terms of this moment map. Using this description we derive formulas for the Betti numbers of $X/\\!/H$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:mi>H</mml:mi> </mml:math> and express the rational cohomology ring of $X/\\!/H$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:mi>H</mml:mi> </mml:math> in terms of the rational cohomology ring of the GIT quotient $X/\\!/T^{H}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>H</mml:mi> </mml:msup> </mml:math> , where $T^{H}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>H</mml:mi> </mml:msup> </mml:math> is a maximal torus in $H$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>H</mml:mi> </mml:math> . We relate intersection pairings on $X/\\!/H$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:mi>H</mml:mi> </mml:math> to intersection pairings on $X/\\!/T^{H}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>H</mml:mi> </mml:msup> </mml:math> , obtaining a residue formula for these pairings on $X/\\!/H$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:mi>H</mml:mi> </mml:math> analogous to the residue formula of (Jeffrey and Kirwan in Topology 34(2):291–327, 1995). As an application, we announce a proof of the Green–Griffiths–Lang and Kobayashi conjectures for projective hypersurfaces with polynomial degree.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Moment maps and cohomology of non-reductive quotients\",\"authors\":\"Gergely Bérczi, Frances Kirwan\",\"doi\":\"10.1007/s00222-023-01218-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $H$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>H</mml:mi> </mml:math> be a complex linear algebraic group with internally graded unipotent radical acting on a complex projective variety $X$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>X</mml:mi> </mml:math> . Given an ample linearisation of the action and an associated Fubini–Study Kähler form which is invariant for a maximal compact subgroup $Q$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>Q</mml:mi> </mml:math> of $H$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>H</mml:mi> </mml:math> , we define a notion of moment map for the action of $H$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>H</mml:mi> </mml:math> , and under suitable conditions (that the linearisation is well-adapted and semistability coincides with stability) we describe the (non-reductive) GIT quotient $X/\\\\!/H$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:mi>H</mml:mi> </mml:math> introduced in (Bérczi et al. in J. Topol. 11(3):826–855, 2018) in terms of this moment map. Using this description we derive formulas for the Betti numbers of $X/\\\\!/H$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:mi>H</mml:mi> </mml:math> and express the rational cohomology ring of $X/\\\\!/H$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:mi>H</mml:mi> </mml:math> in terms of the rational cohomology ring of the GIT quotient $X/\\\\!/T^{H}$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>H</mml:mi> </mml:msup> </mml:math> , where $T^{H}$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>H</mml:mi> </mml:msup> </mml:math> is a maximal torus in $H$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>H</mml:mi> </mml:math> . We relate intersection pairings on $X/\\\\!/H$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:mi>H</mml:mi> </mml:math> to intersection pairings on $X/\\\\!/T^{H}$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:msup> <mml:mi>T</mml:mi> <mml:mi>H</mml:mi> </mml:msup> </mml:math> , obtaining a residue formula for these pairings on $X/\\\\!/H$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>X</mml:mi> <mml:mo>/</mml:mo> <mml:mo>/</mml:mo> <mml:mi>H</mml:mi> </mml:math> analogous to the residue formula of (Jeffrey and Kirwan in Topology 34(2):291–327, 1995). As an application, we announce a proof of the Green–Griffiths–Lang and Kobayashi conjectures for projective hypersurfaces with polynomial degree.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-023-01218-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00222-023-01218-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8
摘要
摘要设$H$ H是作用于一个复射影变量$X$ X上具有内阶单幂根的复线性代数群。给定作用的充分线性化和相关的Fubini-Study Kähler形式,该形式对于$H$ H的最大紧子群$Q$ Q是不变的,我们定义了$H$ H的作用的矩映射概念,并在适当的条件下(线性化适应良好且半稳定性与稳定性一致)我们描述了(非约化)GIT商$X/\!/H$ X / /H引入了(b2013.2013.12)等人在J. Topol. 11(3): 826-855, 2018)。利用这一描述,我们推导出$X/\!/H$ X/ /H并表示$X/\!/H$ X/ /关于GIT商$X/\!/T^{H}$ X / /T H,其中$T^{H}$ T H是$H$ H中的最大环面。我们将$X/\!/H$ X/ /H到$X/\!/T^{H}$ X/ /T H,得到$X/\!/H$ X / /H类似于(Jeffrey and Kirwan在拓扑34(2):291-327,1995)的残差公式。作为应用,我们给出了多项式次射影超曲面的Green-Griffiths-Lang猜想和Kobayashi猜想的证明。
Moment maps and cohomology of non-reductive quotients
Abstract Let $H$ H be a complex linear algebraic group with internally graded unipotent radical acting on a complex projective variety $X$ X . Given an ample linearisation of the action and an associated Fubini–Study Kähler form which is invariant for a maximal compact subgroup $Q$ Q of $H$ H , we define a notion of moment map for the action of $H$ H , and under suitable conditions (that the linearisation is well-adapted and semistability coincides with stability) we describe the (non-reductive) GIT quotient $X/\!/H$ X//H introduced in (Bérczi et al. in J. Topol. 11(3):826–855, 2018) in terms of this moment map. Using this description we derive formulas for the Betti numbers of $X/\!/H$ X//H and express the rational cohomology ring of $X/\!/H$ X//H in terms of the rational cohomology ring of the GIT quotient $X/\!/T^{H}$ X//TH , where $T^{H}$ TH is a maximal torus in $H$ H . We relate intersection pairings on $X/\!/H$ X//H to intersection pairings on $X/\!/T^{H}$ X//TH , obtaining a residue formula for these pairings on $X/\!/H$ X//H analogous to the residue formula of (Jeffrey and Kirwan in Topology 34(2):291–327, 1995). As an application, we announce a proof of the Green–Griffiths–Lang and Kobayashi conjectures for projective hypersurfaces with polynomial degree.