关于具有强血缘假设的血缘截面猜想

IF 2.6 1区 数学 Q1 MATHEMATICS
Giulio Bresciani
{"title":"关于具有强血缘假设的血缘截面猜想","authors":"Giulio Bresciani","doi":"10.1007/s00222-023-01220-6","DOIUrl":null,"url":null,"abstract":"Abstract Let $X$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>X</mml:mi> </mml:math> be a curve over a field $k$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>k</mml:mi> </mml:math> finitely generated over ℚ and $t$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>t</mml:mi> </mml:math> an indeterminate. We prove that, if $s$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>s</mml:mi> </mml:math> is a section of $\\pi _{1}(X)\\to \\operatorname{Gal}(k)$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>π</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> <mml:mo>→</mml:mo> <mml:mo>Gal</mml:mo> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:math> such that the base change $s_{k(t)}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>s</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:msub> </mml:math> is birationally liftable, then $s$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>s</mml:mi> </mml:math> comes from geometry. As a consequence we prove that the section conjecture is equivalent to the cuspidalization of all sections over all finitely generated fields.","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"88 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the birational section conjecture with strong birationality assumptions\",\"authors\":\"Giulio Bresciani\",\"doi\":\"10.1007/s00222-023-01220-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $X$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>X</mml:mi> </mml:math> be a curve over a field $k$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>k</mml:mi> </mml:math> finitely generated over ℚ and $t$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>t</mml:mi> </mml:math> an indeterminate. We prove that, if $s$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>s</mml:mi> </mml:math> is a section of $\\\\pi _{1}(X)\\\\to \\\\operatorname{Gal}(k)$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>π</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> <mml:mo>→</mml:mo> <mml:mo>Gal</mml:mo> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:math> such that the base change $s_{k(t)}$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>s</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:msub> </mml:math> is birationally liftable, then $s$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>s</mml:mi> </mml:math> comes from geometry. As a consequence we prove that the section conjecture is equivalent to the cuspidalization of all sections over all finitely generated fields.\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-023-01220-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00222-023-01220-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要设$X$ X是在一个域$k$ k上有限生成的一条曲线,$t$ t是不确定的。我们证明,如果$s$ s是$\pi _{1}(X)\到\operatorname{Gal}(k)$ π 1 (X)→Gal (k)的一个截面,使得基变$s_{k(t)}$ s$ k(t)是双可升的,则$s$ s来自几何。因此,我们证明了截面猜想等价于所有有限生成域上所有截面的离散化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the birational section conjecture with strong birationality assumptions
Abstract Let $X$ X be a curve over a field $k$ k finitely generated over ℚ and $t$ t an indeterminate. We prove that, if $s$ s is a section of $\pi _{1}(X)\to \operatorname{Gal}(k)$ π 1 ( X ) Gal ( k ) such that the base change $s_{k(t)}$ s k ( t ) is birationally liftable, then $s$ s comes from geometry. As a consequence we prove that the section conjecture is equivalent to the cuspidalization of all sections over all finitely generated fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信