关于具有强血缘假设的血缘截面猜想

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Giulio Bresciani
{"title":"关于具有强血缘假设的血缘截面猜想","authors":"Giulio Bresciani","doi":"10.1007/s00222-023-01220-6","DOIUrl":null,"url":null,"abstract":"Abstract Let $X$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>X</mml:mi> </mml:math> be a curve over a field $k$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>k</mml:mi> </mml:math> finitely generated over ℚ and $t$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>t</mml:mi> </mml:math> an indeterminate. We prove that, if $s$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>s</mml:mi> </mml:math> is a section of $\\pi _{1}(X)\\to \\operatorname{Gal}(k)$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>π</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> <mml:mo>→</mml:mo> <mml:mo>Gal</mml:mo> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:math> such that the base change $s_{k(t)}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>s</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:msub> </mml:math> is birationally liftable, then $s$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>s</mml:mi> </mml:math> comes from geometry. As a consequence we prove that the section conjecture is equivalent to the cuspidalization of all sections over all finitely generated fields.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the birational section conjecture with strong birationality assumptions\",\"authors\":\"Giulio Bresciani\",\"doi\":\"10.1007/s00222-023-01220-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $X$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>X</mml:mi> </mml:math> be a curve over a field $k$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>k</mml:mi> </mml:math> finitely generated over ℚ and $t$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>t</mml:mi> </mml:math> an indeterminate. We prove that, if $s$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>s</mml:mi> </mml:math> is a section of $\\\\pi _{1}(X)\\\\to \\\\operatorname{Gal}(k)$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>π</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> <mml:mo>→</mml:mo> <mml:mo>Gal</mml:mo> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:math> such that the base change $s_{k(t)}$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>s</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:msub> </mml:math> is birationally liftable, then $s$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>s</mml:mi> </mml:math> comes from geometry. As a consequence we prove that the section conjecture is equivalent to the cuspidalization of all sections over all finitely generated fields.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-023-01220-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00222-023-01220-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3

摘要

摘要设$X$ X是在一个域$k$ k上有限生成的一条曲线,$t$ t是不确定的。我们证明,如果$s$ s是$\pi _{1}(X)\到\operatorname{Gal}(k)$ π 1 (X)→Gal (k)的一个截面,使得基变$s_{k(t)}$ s$ k(t)是双可升的,则$s$ s来自几何。因此,我们证明了截面猜想等价于所有有限生成域上所有截面的离散化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the birational section conjecture with strong birationality assumptions
Abstract Let $X$ X be a curve over a field $k$ k finitely generated over ℚ and $t$ t an indeterminate. We prove that, if $s$ s is a section of $\pi _{1}(X)\to \operatorname{Gal}(k)$ π 1 ( X ) Gal ( k ) such that the base change $s_{k(t)}$ s k ( t ) is birationally liftable, then $s$ s comes from geometry. As a consequence we prove that the section conjecture is equivalent to the cuspidalization of all sections over all finitely generated fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信