检测同伦范畴中的同构

IF 0.6 3区 数学 Q3 MATHEMATICS
Kevin Arlin, J. Daniel Christensen
{"title":"检测同伦范畴中的同构","authors":"Kevin Arlin, J. Daniel Christensen","doi":"10.2140/agt.2023.23.2975","DOIUrl":null,"url":null,"abstract":"We show that the homotopy category of unpointed spaces admits no set of objects jointly reflecting isomorphisms by giving an explicit counterexample involving large symmetric groups. We also show that, in contrast, the spheres jointly reflect equivalences in the homotopy 2-category of spaces. The non-existence of such a set in the homotopy category was originally claimed by Heller, but his argument relied on the statement that for every set of spaces, long enough transfinite sequential diagrams admit weak colimits which are privileged with respect to the given set. Using the theory of graphs of groups, we show that this statement is false, by proving that for every ordinal with uncountable cofinality, there is a diagram indexed by that ordinal which admits no weak colimit that is privileged with respect to the spheres.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"49 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detecting isomorphisms in the homotopy category\",\"authors\":\"Kevin Arlin, J. Daniel Christensen\",\"doi\":\"10.2140/agt.2023.23.2975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the homotopy category of unpointed spaces admits no set of objects jointly reflecting isomorphisms by giving an explicit counterexample involving large symmetric groups. We also show that, in contrast, the spheres jointly reflect equivalences in the homotopy 2-category of spaces. The non-existence of such a set in the homotopy category was originally claimed by Heller, but his argument relied on the statement that for every set of spaces, long enough transfinite sequential diagrams admit weak colimits which are privileged with respect to the given set. Using the theory of graphs of groups, we show that this statement is false, by proving that for every ordinal with uncountable cofinality, there is a diagram indexed by that ordinal which admits no weak colimit that is privileged with respect to the spheres.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.2975\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2975","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

通过给出一个涉及大对称群的显反例,证明了无点空间的同伦范畴不允许有一组共同反映同构的对象。相反,我们还证明了球在同伦2范畴空间中共同反映等价。这种集合在同伦范畴中的不存在性最初是由Heller提出的,但是他的论证依赖于这样一个命题:对于每一个空间集合,足够长的超限序列图都承认弱极限,这些弱极限相对于给定的集合是特权的。利用群图的理论,我们证明了对于每一个具有不可数共度的序数,存在一个由该序数索引的图,该图不允许有关于球的弱极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting isomorphisms in the homotopy category
We show that the homotopy category of unpointed spaces admits no set of objects jointly reflecting isomorphisms by giving an explicit counterexample involving large symmetric groups. We also show that, in contrast, the spheres jointly reflect equivalences in the homotopy 2-category of spaces. The non-existence of such a set in the homotopy category was originally claimed by Heller, but his argument relied on the statement that for every set of spaces, long enough transfinite sequential diagrams admit weak colimits which are privileged with respect to the given set. Using the theory of graphs of groups, we show that this statement is false, by proving that for every ordinal with uncountable cofinality, there is a diagram indexed by that ordinal which admits no weak colimit that is privileged with respect to the spheres.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信