代数几何中的Devinatz-Hopkins定理

IF 0.6 3区 数学 Q3 MATHEMATICS
Rok Gregoric
{"title":"代数几何中的Devinatz-Hopkins定理","authors":"Rok Gregoric","doi":"10.2140/agt.2023.23.3015","DOIUrl":null,"url":null,"abstract":"In this note, we show how a continuous action of the Morava stabilizer group $\\mathbb G_n$ on the Lubin-Tate spectrum $E_n$, satisfying the conclusion $E_n^{h\\mathbb G_n}\\simeq L_{K(n)} S$ of the Devinatz-Hopkins Theorem, may be obtained by monodromy on the stack of oriented deformations of formal groups in the context of formal spectral algebraic geometry.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"77 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Devinatz–Hopkins theorem via algebraic geometry\",\"authors\":\"Rok Gregoric\",\"doi\":\"10.2140/agt.2023.23.3015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we show how a continuous action of the Morava stabilizer group $\\\\mathbb G_n$ on the Lubin-Tate spectrum $E_n$, satisfying the conclusion $E_n^{h\\\\mathbb G_n}\\\\simeq L_{K(n)} S$ of the Devinatz-Hopkins Theorem, may be obtained by monodromy on the stack of oriented deformations of formal groups in the context of formal spectral algebraic geometry.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.3015\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.3015","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们展示了如何在形式谱代数几何的背景下,通过在形式群的取向变形叠加上的单构得到Morava稳定群$\mathbb G_n$在Lubin-Tate谱$E_n$上的连续作用,满足Devinatz-Hopkins定理的结论$E_n^{h\mathbb G_n}\simeq L_{K(n)} S$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Devinatz–Hopkins theorem via algebraic geometry
In this note, we show how a continuous action of the Morava stabilizer group $\mathbb G_n$ on the Lubin-Tate spectrum $E_n$, satisfying the conclusion $E_n^{h\mathbb G_n}\simeq L_{K(n)} S$ of the Devinatz-Hopkins Theorem, may be obtained by monodromy on the stack of oriented deformations of formal groups in the context of formal spectral algebraic geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信