双曲基群非球流形上圆束的Hopf问题

IF 0.6 3区 数学 Q3 MATHEMATICS
Christoforos Neofytidis
{"title":"双曲基群非球流形上圆束的Hopf问题","authors":"Christoforos Neofytidis","doi":"10.2140/agt.2023.23.3205","DOIUrl":null,"url":null,"abstract":"We prove that a circle bundle over a closed oriented aspherical manifold with hyperbolic fundamental group admits a self-map of absolute degree greater than one if and only if it is the trivial bundle. This generalizes in every dimension the case of circle bundles over hyperbolic surfaces, for which the result was known by the work of Brooks and Goldman on the Seifert volume. As a consequence, we verify the following strong version of a problem of Hopf for the above class of manifolds: Every self-map of non-zero degree of a circle bundle over a closed oriented aspherical manifold with hyperbolic fundamental group is either homotopic to a homeomorphism or homotopic to a non-trivial covering and the bundle is trivial. ","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"1 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On a problem of Hopf for circle bundles over aspherical manifolds with hyperbolic fundamental groups\",\"authors\":\"Christoforos Neofytidis\",\"doi\":\"10.2140/agt.2023.23.3205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a circle bundle over a closed oriented aspherical manifold with hyperbolic fundamental group admits a self-map of absolute degree greater than one if and only if it is the trivial bundle. This generalizes in every dimension the case of circle bundles over hyperbolic surfaces, for which the result was known by the work of Brooks and Goldman on the Seifert volume. As a consequence, we verify the following strong version of a problem of Hopf for the above class of manifolds: Every self-map of non-zero degree of a circle bundle over a closed oriented aspherical manifold with hyperbolic fundamental group is either homotopic to a homeomorphism or homotopic to a non-trivial covering and the bundle is trivial. \",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.3205\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.3205","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

证明了具有双曲基群的闭取向非球流形上的圆束存在绝对度大于1的自映射当且仅当它是平凡束。这推广了双曲表面上的圆束在每个维度上的情况,其结果由Brooks和Goldman在Seifert卷上的工作所知。因此,我们验证了上述流形的Hopf问题的以下强版本:具有双曲基群的闭取向非球流形上的圆束的非零度的每一个自映射要么与同胚同调,要么与非平凡覆盖同调,且该束是平凡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a problem of Hopf for circle bundles over aspherical manifolds with hyperbolic fundamental groups
We prove that a circle bundle over a closed oriented aspherical manifold with hyperbolic fundamental group admits a self-map of absolute degree greater than one if and only if it is the trivial bundle. This generalizes in every dimension the case of circle bundles over hyperbolic surfaces, for which the result was known by the work of Brooks and Goldman on the Seifert volume. As a consequence, we verify the following strong version of a problem of Hopf for the above class of manifolds: Every self-map of non-zero degree of a circle bundle over a closed oriented aspherical manifold with hyperbolic fundamental group is either homotopic to a homeomorphism or homotopic to a non-trivial covering and the bundle is trivial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信