v型槽/褶皱层叠阵列压印屈曲的实验与仿真研究

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Nianqiang Zhang, Jin Ji, Jilai Wang, Zhenyu Shi, Chengpeng Zhang
{"title":"v型槽/褶皱层叠阵列压印屈曲的实验与仿真研究","authors":"Nianqiang Zhang, Jin Ji, Jilai Wang, Zhenyu Shi, Chengpeng Zhang","doi":"10.1088/1361-6439/acf93f","DOIUrl":null,"url":null,"abstract":"Abstract With the in-depth development and continuous innovation of micro and nano manufacturing technology, flexible strain sensors are more and more widely used in various fields, including soft robots, smart clothing and so on, and high-performance sensors are more in demand. An efficient tactic for enhancing the performance of flexible strain sensors is to design and create hierarchical structures, and its efficient and controllable manufacturing is a key problem. The controllable manufacturing of V-groove/wrinkles hierarchical structure is realized by nano-imprint and prestretch-release process, which provides an effective method for large-area controllable preparation of hierarchical structure, and provides a foundation for the construction of high-performance flexible strain sensor. Single-factor experiments were carried out on the slope of the primary structure, pre-strain and substrate thickness, and response surface analysis was carried out by Box–Behnken experiments. The results of the structure’s formation are significantly influenced by the slope and substrate thickness, and the optimal process parameters are obtained by response surface analysis. Then the impact of each process parameter was investigated using a process simulation model. Finally, the forming conditions of hierarchical structure are analyzed. This study can provide guidance for the efficient and controllable manufacturing of micro/nano hierarchical structures.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"328 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and simulation investigation for imprinting and buckling of V-groove/wrinkles hierarchical array\",\"authors\":\"Nianqiang Zhang, Jin Ji, Jilai Wang, Zhenyu Shi, Chengpeng Zhang\",\"doi\":\"10.1088/1361-6439/acf93f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With the in-depth development and continuous innovation of micro and nano manufacturing technology, flexible strain sensors are more and more widely used in various fields, including soft robots, smart clothing and so on, and high-performance sensors are more in demand. An efficient tactic for enhancing the performance of flexible strain sensors is to design and create hierarchical structures, and its efficient and controllable manufacturing is a key problem. The controllable manufacturing of V-groove/wrinkles hierarchical structure is realized by nano-imprint and prestretch-release process, which provides an effective method for large-area controllable preparation of hierarchical structure, and provides a foundation for the construction of high-performance flexible strain sensor. Single-factor experiments were carried out on the slope of the primary structure, pre-strain and substrate thickness, and response surface analysis was carried out by Box–Behnken experiments. The results of the structure’s formation are significantly influenced by the slope and substrate thickness, and the optimal process parameters are obtained by response surface analysis. Then the impact of each process parameter was investigated using a process simulation model. Finally, the forming conditions of hierarchical structure are analyzed. This study can provide guidance for the efficient and controllable manufacturing of micro/nano hierarchical structures.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\"328 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/acf93f\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6439/acf93f","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着微纳米制造技术的深入发展和不断创新,柔性应变传感器越来越广泛地应用于各个领域,包括软体机器人、智能服装等,对高性能传感器的需求也越来越大。提高柔性应变传感器性能的有效策略是设计和制造分层结构,而分层结构的高效可控制造是关键问题。通过纳米压印和预拉伸释放工艺实现了v型槽/褶皱分层结构的可控制造,为分层结构的大面积可控制备提供了有效方法,为高性能柔性应变传感器的构建奠定了基础。采用Box-Behnken试验对主结构坡度、预应变和基底厚度进行单因素试验,响应面分析采用Box-Behnken试验。坡面和衬底厚度对结构的形成结果有显著影响,通过响应面分析获得了最优工艺参数。然后利用过程仿真模型研究了各工艺参数的影响。最后,分析了分层结构的形成条件。该研究可为微纳层次化结构的高效可控制造提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and simulation investigation for imprinting and buckling of V-groove/wrinkles hierarchical array
Abstract With the in-depth development and continuous innovation of micro and nano manufacturing technology, flexible strain sensors are more and more widely used in various fields, including soft robots, smart clothing and so on, and high-performance sensors are more in demand. An efficient tactic for enhancing the performance of flexible strain sensors is to design and create hierarchical structures, and its efficient and controllable manufacturing is a key problem. The controllable manufacturing of V-groove/wrinkles hierarchical structure is realized by nano-imprint and prestretch-release process, which provides an effective method for large-area controllable preparation of hierarchical structure, and provides a foundation for the construction of high-performance flexible strain sensor. Single-factor experiments were carried out on the slope of the primary structure, pre-strain and substrate thickness, and response surface analysis was carried out by Box–Behnken experiments. The results of the structure’s formation are significantly influenced by the slope and substrate thickness, and the optimal process parameters are obtained by response surface analysis. Then the impact of each process parameter was investigated using a process simulation model. Finally, the forming conditions of hierarchical structure are analyzed. This study can provide guidance for the efficient and controllable manufacturing of micro/nano hierarchical structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信