二元系数Aut(Fn)稳定上同调的轮式PROP

Pub Date : 2023-09-26 DOI:10.2140/agt.2023.23.3089
Nariya Kawazumi, Christine Vespa
{"title":"二元系数Aut(Fn)稳定上同调的轮式PROP","authors":"Nariya Kawazumi, Christine Vespa","doi":"10.2140/agt.2023.23.3089","DOIUrl":null,"url":null,"abstract":"We show that the stable cohomology of automorphism groups of free groups with coefficients obtained by applying Hom(−, −) to tensor powers of the abelianization, is equipped with the structure of a wheeled PROP H. We define another wheeled PROP E by Ext-groups in the category of functors from the category of finitely generated free groups to k-modules. The main result of this paper is the construction of a morphism of wheeled PROPs ϕ : E → H such that ϕ(E) is the wheeled PROP generated by the cohomology class h 1 constructed by the first author.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the wheeled PROP of stable cohomology of Aut(Fn) with bivariant coefficients\",\"authors\":\"Nariya Kawazumi, Christine Vespa\",\"doi\":\"10.2140/agt.2023.23.3089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the stable cohomology of automorphism groups of free groups with coefficients obtained by applying Hom(−, −) to tensor powers of the abelianization, is equipped with the structure of a wheeled PROP H. We define another wheeled PROP E by Ext-groups in the category of functors from the category of finitely generated free groups to k-modules. The main result of this paper is the construction of a morphism of wheeled PROPs ϕ : E → H such that ϕ(E) is the wheeled PROP generated by the cohomology class h 1 constructed by the first author.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.3089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.3089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们证明了自由群的自同构群的稳定上同调具有轮式PROP h的结构。我们用有限生成的自由群到k-模的函子范畴中的ext群定义了另一个轮式PROP E。本文的主要结果是构造了轮式PROP的一个态射φ: E→H,使得φ (E)是由第一作者构造的上同调类H 1生成的轮式PROP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the wheeled PROP of stable cohomology of Aut(Fn) with bivariant coefficients
We show that the stable cohomology of automorphism groups of free groups with coefficients obtained by applying Hom(−, −) to tensor powers of the abelianization, is equipped with the structure of a wheeled PROP H. We define another wheeled PROP E by Ext-groups in the category of functors from the category of finitely generated free groups to k-modules. The main result of this paper is the construction of a morphism of wheeled PROPs ϕ : E → H such that ϕ(E) is the wheeled PROP generated by the cohomology class h 1 constructed by the first author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信