锚定泡沫和环空同源性

IF 0.6 3区 数学 Q3 MATHEMATICS
Rostislav Akhmechet, Mikhail Khovanov
{"title":"锚定泡沫和环空同源性","authors":"Rostislav Akhmechet, Mikhail Khovanov","doi":"10.2140/agt.2023.23.3129","DOIUrl":null,"url":null,"abstract":"We describe equivariant SL(2) and SL(3) homology for links in the solid torus via foam evaluation. The solid torus is replaced by 3-space with a distinguished line in it. Generators of state spaces for annular webs are represented by foams with boundary that may intersect the distinguished line; intersection points, called anchor points, contribute additional terms, reminiscent of square roots of the Hessian, to the foam evaluation. Both oriented and unoriented SL(3) foams are treated in the paper.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"43 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Anchored foams and annular homology\",\"authors\":\"Rostislav Akhmechet, Mikhail Khovanov\",\"doi\":\"10.2140/agt.2023.23.3129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe equivariant SL(2) and SL(3) homology for links in the solid torus via foam evaluation. The solid torus is replaced by 3-space with a distinguished line in it. Generators of state spaces for annular webs are represented by foams with boundary that may intersect the distinguished line; intersection points, called anchor points, contribute additional terms, reminiscent of square roots of the Hessian, to the foam evaluation. Both oriented and unoriented SL(3) foams are treated in the paper.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.3129\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.3129","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

通过泡沫评价,我们描述了固体环面中链接的等变SL(2)和SL(3)同源性。实体环面被三维空间替换,其中有一条不同的线。环形腹板状态空间的生成器用泡沫表示,泡沫的边界可能与区分线相交;交点,称为锚点,为泡沫评估提供了额外的术语,让人想起黑森的平方根。本文对定向和无取向SL(3)泡沫进行了处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anchored foams and annular homology
We describe equivariant SL(2) and SL(3) homology for links in the solid torus via foam evaluation. The solid torus is replaced by 3-space with a distinguished line in it. Generators of state spaces for annular webs are represented by foams with boundary that may intersect the distinguished line; intersection points, called anchor points, contribute additional terms, reminiscent of square roots of the Hessian, to the foam evaluation. Both oriented and unoriented SL(3) foams are treated in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信