B型和D型Coxeter群无穷族的模2上同调

IF 0.6 3区 数学 Q3 MATHEMATICS
L. Guerra
{"title":"B型和D型Coxeter群无穷族的模2上同调","authors":"L. Guerra","doi":"10.2140/agt.2023.23.3221","DOIUrl":null,"url":null,"abstract":"We describe a Hopf ring structure on the direct sum of the cohomology groups $\\bigoplus_{n \\geq 0} H^* \\left( W_{B_n}; \\mathbb{F}_2 \\right)$ of the Coxeter groups of type $B_n$, and an almost-Hopf ring structure on the direct sum of the cohomology groups $\\bigoplus_{n \\geq 0} H^* \\left( W_{D_n}; \\mathbb{F}_2 \\right)$ of the Coxeter groups of type $D_n$, with coefficient in the field with two elements $\\mathbb{F}_2$. We give presentations with generators and relations, determine additive bases and compute the Steenrod algebra action. The generators are described both in terms of a geometric construction by De Concini and Salvetti and in terms of their restriction to elementary abelian 2-subgroups.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"2 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The mod 2 cohomology of the infinite families of Coxeter groups of type B and D as almost-Hopf rings\",\"authors\":\"L. Guerra\",\"doi\":\"10.2140/agt.2023.23.3221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a Hopf ring structure on the direct sum of the cohomology groups $\\\\bigoplus_{n \\\\geq 0} H^* \\\\left( W_{B_n}; \\\\mathbb{F}_2 \\\\right)$ of the Coxeter groups of type $B_n$, and an almost-Hopf ring structure on the direct sum of the cohomology groups $\\\\bigoplus_{n \\\\geq 0} H^* \\\\left( W_{D_n}; \\\\mathbb{F}_2 \\\\right)$ of the Coxeter groups of type $D_n$, with coefficient in the field with two elements $\\\\mathbb{F}_2$. We give presentations with generators and relations, determine additive bases and compute the Steenrod algebra action. The generators are described both in terms of a geometric construction by De Concini and Salvetti and in terms of their restriction to elementary abelian 2-subgroups.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.3221\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.3221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们描述了类型为$B_n$的Coxeter群的上同群$\bigoplus_{n \geq 0} H^* \left( W_{B_n}; \mathbb{F}_2 \right)$的直和上的Hopf环结构,以及类型为$D_n$的Coxeter群的上同群$\bigoplus_{n \geq 0} H^* \left( W_{D_n}; \mathbb{F}_2 \right)$的直和上的几乎Hopf环结构,在双元域$\mathbb{F}_2$上具有系数。给出了生成和关系,确定了加性基,计算了Steenrod代数作用。这些生成器是根据De Concini和Salvetti的几何构造以及它们对初等阿贝尔2-子群的限制来描述的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The mod 2 cohomology of the infinite families of Coxeter groups of type B and D as almost-Hopf rings
We describe a Hopf ring structure on the direct sum of the cohomology groups $\bigoplus_{n \geq 0} H^* \left( W_{B_n}; \mathbb{F}_2 \right)$ of the Coxeter groups of type $B_n$, and an almost-Hopf ring structure on the direct sum of the cohomology groups $\bigoplus_{n \geq 0} H^* \left( W_{D_n}; \mathbb{F}_2 \right)$ of the Coxeter groups of type $D_n$, with coefficient in the field with two elements $\mathbb{F}_2$. We give presentations with generators and relations, determine additive bases and compute the Steenrod algebra action. The generators are described both in terms of a geometric construction by De Concini and Salvetti and in terms of their restriction to elementary abelian 2-subgroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信