{"title":"广义聚类复合体:面和相关停车位的精炼枚举","authors":"Theo Douvropoulos, Matthieu Josuat-Vergès","doi":"10.3842/sigma.2023.069","DOIUrl":null,"url":null,"abstract":"The generalized cluster complex was introduced by Fomin and Reading, as a natural extension of the Fomin-Zelevinsky cluster complex coming from finite type cluster algebras. In this work, to each face of this complex we associate a parabolic conjugacy class of the underlying finite Coxeter group. We show that the refined enumeration of faces (respectively, positive faces) according to this data gives an explicit formula in terms of the corresponding characteristic polynomial (equivalently, in terms of Orlik-Solomon exponents). This characteristic polynomial originally comes from the theory of hyperplane arrangements, but it is conveniently defined via the parabolic Burnside ring. This makes a connection with the theory of parking spaces: our results eventually rely on some enumeration of chains of noncrossing partitions that were obtained in this context. The precise relations between the formulas counting faces and the one counting chains of noncrossing partitions are combinatorial reciprocities, generalizing the one between Narayana and Kirkman numbers.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"43 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Generalized Cluster Complex: Refined Enumeration of Faces and Related Parking Spaces\",\"authors\":\"Theo Douvropoulos, Matthieu Josuat-Vergès\",\"doi\":\"10.3842/sigma.2023.069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized cluster complex was introduced by Fomin and Reading, as a natural extension of the Fomin-Zelevinsky cluster complex coming from finite type cluster algebras. In this work, to each face of this complex we associate a parabolic conjugacy class of the underlying finite Coxeter group. We show that the refined enumeration of faces (respectively, positive faces) according to this data gives an explicit formula in terms of the corresponding characteristic polynomial (equivalently, in terms of Orlik-Solomon exponents). This characteristic polynomial originally comes from the theory of hyperplane arrangements, but it is conveniently defined via the parabolic Burnside ring. This makes a connection with the theory of parking spaces: our results eventually rely on some enumeration of chains of noncrossing partitions that were obtained in this context. The precise relations between the formulas counting faces and the one counting chains of noncrossing partitions are combinatorial reciprocities, generalizing the one between Narayana and Kirkman numbers.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/sigma.2023.069\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.069","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Generalized Cluster Complex: Refined Enumeration of Faces and Related Parking Spaces
The generalized cluster complex was introduced by Fomin and Reading, as a natural extension of the Fomin-Zelevinsky cluster complex coming from finite type cluster algebras. In this work, to each face of this complex we associate a parabolic conjugacy class of the underlying finite Coxeter group. We show that the refined enumeration of faces (respectively, positive faces) according to this data gives an explicit formula in terms of the corresponding characteristic polynomial (equivalently, in terms of Orlik-Solomon exponents). This characteristic polynomial originally comes from the theory of hyperplane arrangements, but it is conveniently defined via the parabolic Burnside ring. This makes a connection with the theory of parking spaces: our results eventually rely on some enumeration of chains of noncrossing partitions that were obtained in this context. The precise relations between the formulas counting faces and the one counting chains of noncrossing partitions are combinatorial reciprocities, generalizing the one between Narayana and Kirkman numbers.
期刊介绍:
Scope
Geometrical methods in mathematical physics
Lie theory and differential equations
Classical and quantum integrable systems
Algebraic methods in dynamical systems and chaos
Exactly and quasi-exactly solvable models
Lie groups and algebras, representation theory
Orthogonal polynomials and special functions
Integrable probability and stochastic processes
Quantum algebras, quantum groups and their representations
Symplectic, Poisson and noncommutative geometry
Algebraic geometry and its applications
Quantum field theories and string/gauge theories
Statistical physics and condensed matter physics
Quantum gravity and cosmology.