雷顿定理和正立方复合体

IF 0.6 3区 数学 Q3 MATHEMATICS
Daniel J. Woodhouse
{"title":"雷顿定理和正立方复合体","authors":"Daniel J. Woodhouse","doi":"10.2140/agt.2023.23.3395","DOIUrl":null,"url":null,"abstract":"Leighton's graph covering theorem states that two finite graphs with common universal cover have a common finite cover. We generalize this to a large family of non-positively curved special cube complexes that form a natural generalization of regular graphs. This family includes both hyperbolic and non-hyperbolic CAT(0) cube complexes.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"2 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leighton’s theorem and regular cube complexes\",\"authors\":\"Daniel J. Woodhouse\",\"doi\":\"10.2140/agt.2023.23.3395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leighton's graph covering theorem states that two finite graphs with common universal cover have a common finite cover. We generalize this to a large family of non-positively curved special cube complexes that form a natural generalization of regular graphs. This family includes both hyperbolic and non-hyperbolic CAT(0) cube complexes.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.3395\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.3395","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

Leighton的图覆盖定理指出两个有共同全称覆盖的有限图有一个共同的有限覆盖。我们将其推广到形成正则图的自然推广的非正弯曲的特殊立方体复形的大族。这个家族包括双曲和非双曲CAT(0)立方体配合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leighton’s theorem and regular cube complexes
Leighton's graph covering theorem states that two finite graphs with common universal cover have a common finite cover. We generalize this to a large family of non-positively curved special cube complexes that form a natural generalization of regular graphs. This family includes both hyperbolic and non-hyperbolic CAT(0) cube complexes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信