第五阶painlevleve方程的模空间

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Marius van der Put, Jaap Top
{"title":"第五阶painlevleve方程的模空间","authors":"Marius van der Put, Jaap Top","doi":"10.3842/sigma.2023.068","DOIUrl":null,"url":null,"abstract":"Isomonodromy for the fifth Painlevé equation ${\\rm P}_5$ is studied in detail in the context of certain moduli spaces for connections, monodromy, the Riemann-Hilbert morphism, and Okamoto-Painlevé spaces. This involves explicit formulas for Stokes matrices and parabolic structures. The rank 4 Lax pair for ${\\rm P}_5$, introduced by Noumi-Yamada et al., is shown to be induced by a natural fine moduli space of connections of rank 4. As a by-product one obtains a polynomial Hamiltonian for ${\\rm P}_5$, equivalent to the one of Okamoto.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moduli Spaces for the Fifth Painlevé Equation\",\"authors\":\"Marius van der Put, Jaap Top\",\"doi\":\"10.3842/sigma.2023.068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Isomonodromy for the fifth Painlevé equation ${\\\\rm P}_5$ is studied in detail in the context of certain moduli spaces for connections, monodromy, the Riemann-Hilbert morphism, and Okamoto-Painlevé spaces. This involves explicit formulas for Stokes matrices and parabolic structures. The rank 4 Lax pair for ${\\\\rm P}_5$, introduced by Noumi-Yamada et al., is shown to be induced by a natural fine moduli space of connections of rank 4. As a by-product one obtains a polynomial Hamiltonian for ${\\\\rm P}_5$, equivalent to the one of Okamoto.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/sigma.2023.068\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.068","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在连接模空间、单态、Riemann-Hilbert态射和okamoto - painlev空间的背景下,详细研究了第五阶painlev方程${\rm P}_5$的等同构性。这涉及Stokes矩阵和抛物结构的显式公式。由Noumi-Yamada等人引入的${\rm P}_5$的4阶Lax对被证明是由4阶连接的自然精细模空间诱导出来的。作为副产物,我们得到${\rm P}_5$的多项式哈密顿量,等价于冈本的哈密顿量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moduli Spaces for the Fifth Painlevé Equation
Isomonodromy for the fifth Painlevé equation ${\rm P}_5$ is studied in detail in the context of certain moduli spaces for connections, monodromy, the Riemann-Hilbert morphism, and Okamoto-Painlevé spaces. This involves explicit formulas for Stokes matrices and parabolic structures. The rank 4 Lax pair for ${\rm P}_5$, introduced by Noumi-Yamada et al., is shown to be induced by a natural fine moduli space of connections of rank 4. As a by-product one obtains a polynomial Hamiltonian for ${\rm P}_5$, equivalent to the one of Okamoto.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信