{"title":"第五阶painlevleve方程的模空间","authors":"Marius van der Put, Jaap Top","doi":"10.3842/sigma.2023.068","DOIUrl":null,"url":null,"abstract":"Isomonodromy for the fifth Painlevé equation ${\\rm P}_5$ is studied in detail in the context of certain moduli spaces for connections, monodromy, the Riemann-Hilbert morphism, and Okamoto-Painlevé spaces. This involves explicit formulas for Stokes matrices and parabolic structures. The rank 4 Lax pair for ${\\rm P}_5$, introduced by Noumi-Yamada et al., is shown to be induced by a natural fine moduli space of connections of rank 4. As a by-product one obtains a polynomial Hamiltonian for ${\\rm P}_5$, equivalent to the one of Okamoto.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moduli Spaces for the Fifth Painlevé Equation\",\"authors\":\"Marius van der Put, Jaap Top\",\"doi\":\"10.3842/sigma.2023.068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Isomonodromy for the fifth Painlevé equation ${\\\\rm P}_5$ is studied in detail in the context of certain moduli spaces for connections, monodromy, the Riemann-Hilbert morphism, and Okamoto-Painlevé spaces. This involves explicit formulas for Stokes matrices and parabolic structures. The rank 4 Lax pair for ${\\\\rm P}_5$, introduced by Noumi-Yamada et al., is shown to be induced by a natural fine moduli space of connections of rank 4. As a by-product one obtains a polynomial Hamiltonian for ${\\\\rm P}_5$, equivalent to the one of Okamoto.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/sigma.2023.068\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.068","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Isomonodromy for the fifth Painlevé equation ${\rm P}_5$ is studied in detail in the context of certain moduli spaces for connections, monodromy, the Riemann-Hilbert morphism, and Okamoto-Painlevé spaces. This involves explicit formulas for Stokes matrices and parabolic structures. The rank 4 Lax pair for ${\rm P}_5$, introduced by Noumi-Yamada et al., is shown to be induced by a natural fine moduli space of connections of rank 4. As a by-product one obtains a polynomial Hamiltonian for ${\rm P}_5$, equivalent to the one of Okamoto.
期刊介绍:
Scope
Geometrical methods in mathematical physics
Lie theory and differential equations
Classical and quantum integrable systems
Algebraic methods in dynamical systems and chaos
Exactly and quasi-exactly solvable models
Lie groups and algebras, representation theory
Orthogonal polynomials and special functions
Integrable probability and stochastic processes
Quantum algebras, quantum groups and their representations
Symplectic, Poisson and noncommutative geometry
Algebraic geometry and its applications
Quantum field theories and string/gauge theories
Statistical physics and condensed matter physics
Quantum gravity and cosmology.