广义LATE模型的高效鲁棒估计

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Haitian Xie
{"title":"广义LATE模型的高效鲁棒估计","authors":"Haitian Xie","doi":"10.1080/07350015.2023.2282497","DOIUrl":null,"url":null,"abstract":"Abstract–This paper studies the estimation of causal parameters in the generalized local average treatment effect (GLATE) model, which expands upon the traditional LATE model to include multivalued treatments. We derive the efficient influence function (EIF) and the semiparametric efficiency bound (SPEB) for two types of causal parameters: the local average structural function (LASF) and the local average structural function for the treated (LASFT). The moment conditions generated by the EIF satisfy two robustness properties: double robustness and Neyman orthogonality. Based on the robust moment conditions, we propose the double/debiased machine learning (DML) estimator for estimating the LASF. The DML estimator is well-suited for high dimensional settings. We also propose null-restricted inference methods that are robust against weak identification issues. As an empirical application of these methods, we examine the potential health outcome across different types of health insurance plans using data from the Oregon Health Insurance Experiment.Keywords: Double RobustnessEfficient Influence FunctionMultivalued TreatmentNeyman OrthogonalityUnordered MonotonicityWeak Identification.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and Robust Estimation of the Generalized LATE Model\",\"authors\":\"Haitian Xie\",\"doi\":\"10.1080/07350015.2023.2282497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract–This paper studies the estimation of causal parameters in the generalized local average treatment effect (GLATE) model, which expands upon the traditional LATE model to include multivalued treatments. We derive the efficient influence function (EIF) and the semiparametric efficiency bound (SPEB) for two types of causal parameters: the local average structural function (LASF) and the local average structural function for the treated (LASFT). The moment conditions generated by the EIF satisfy two robustness properties: double robustness and Neyman orthogonality. Based on the robust moment conditions, we propose the double/debiased machine learning (DML) estimator for estimating the LASF. The DML estimator is well-suited for high dimensional settings. We also propose null-restricted inference methods that are robust against weak identification issues. As an empirical application of these methods, we examine the potential health outcome across different types of health insurance plans using data from the Oregon Health Insurance Experiment.Keywords: Double RobustnessEfficient Influence FunctionMultivalued TreatmentNeyman OrthogonalityUnordered MonotonicityWeak Identification.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2023.2282497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2282497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文研究广义局部平均处理效应(GLATE)模型中因果参数的估计,该模型在传统LATE模型的基础上进行了扩展,使其包括多值处理。我们导出了两类因果参数的有效影响函数(EIF)和半参数效率界(SPEB):局部平均结构函数(LASF)和被处理对象的局部平均结构函数(LASFT)。由EIF产生的力矩条件满足双重鲁棒性和内曼正交性两个鲁棒性。基于鲁棒矩条件,我们提出了双/去偏机器学习(DML)估计器来估计LASF。DML估计器非常适合高维设置。我们还提出了对弱识别问题具有鲁棒性的零限制推理方法。作为这些方法的实证应用,我们使用来自俄勒冈州健康保险实验的数据来检验不同类型健康保险计划的潜在健康结果。关键词:双鲁棒性、有效影响函数、多值处理、内曼正交、无序单调性、弱辨识免责声明作为对作者和研究人员的服务,我们提供了这个版本的已接受的手稿(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient and Robust Estimation of the Generalized LATE Model
Abstract–This paper studies the estimation of causal parameters in the generalized local average treatment effect (GLATE) model, which expands upon the traditional LATE model to include multivalued treatments. We derive the efficient influence function (EIF) and the semiparametric efficiency bound (SPEB) for two types of causal parameters: the local average structural function (LASF) and the local average structural function for the treated (LASFT). The moment conditions generated by the EIF satisfy two robustness properties: double robustness and Neyman orthogonality. Based on the robust moment conditions, we propose the double/debiased machine learning (DML) estimator for estimating the LASF. The DML estimator is well-suited for high dimensional settings. We also propose null-restricted inference methods that are robust against weak identification issues. As an empirical application of these methods, we examine the potential health outcome across different types of health insurance plans using data from the Oregon Health Insurance Experiment.Keywords: Double RobustnessEfficient Influence FunctionMultivalued TreatmentNeyman OrthogonalityUnordered MonotonicityWeak Identification.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信