关于正Cohen弱核多线性算子

IF 1 Q1 MATHEMATICS
A. Bougoutaia, A. Belacel, R. Macedo, H. Hamdi
{"title":"关于正Cohen弱核多线性算子","authors":"A. Bougoutaia, A. Belacel, R. Macedo, H. Hamdi","doi":"10.15330/cmp.15.2.396-410","DOIUrl":null,"url":null,"abstract":"In this article, we establish new relationships involving the class of Cohen positive strongly $p$-summing multilinear operators. Furthermore, we introduce a new class of multilinear operators on Banach lattices, called positive Cohen weakly nuclear multilinear operators. We establish a Pietsch domination-type theorem for this new class of multilinear operators. As an application, we show that every positive Cohen weakly $p$-nuclear multilinear operator is positive Dimant strongly $p$-summing and Cohen positive strongly $p$-summing. We conclude with a tensor representation of our class.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On positive Cohen weakly nuclear multilinear operators\",\"authors\":\"A. Bougoutaia, A. Belacel, R. Macedo, H. Hamdi\",\"doi\":\"10.15330/cmp.15.2.396-410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we establish new relationships involving the class of Cohen positive strongly $p$-summing multilinear operators. Furthermore, we introduce a new class of multilinear operators on Banach lattices, called positive Cohen weakly nuclear multilinear operators. We establish a Pietsch domination-type theorem for this new class of multilinear operators. As an application, we show that every positive Cohen weakly $p$-nuclear multilinear operator is positive Dimant strongly $p$-summing and Cohen positive strongly $p$-summing. We conclude with a tensor representation of our class.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.2.396-410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.396-410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了涉及Cohen正强$p$和多线性算子类的新关系。进一步,我们在Banach格上引入了一类新的多线性算子,称为正Cohen弱核多线性算子。我们为这类新的多线性算子建立了一个Pietsch支配型定理。作为一个应用,我们证明了每一个正的Cohen弱$p$-核多线性算子都是正的Dimant强$p$-和和Cohen正强$p$-和。我们用类的张量表示来总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On positive Cohen weakly nuclear multilinear operators
In this article, we establish new relationships involving the class of Cohen positive strongly $p$-summing multilinear operators. Furthermore, we introduce a new class of multilinear operators on Banach lattices, called positive Cohen weakly nuclear multilinear operators. We establish a Pietsch domination-type theorem for this new class of multilinear operators. As an application, we show that every positive Cohen weakly $p$-nuclear multilinear operator is positive Dimant strongly $p$-summing and Cohen positive strongly $p$-summing. We conclude with a tensor representation of our class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信