{"title":"从熔盐快堆设计的角度要求35cl (n,p)反应截面测量和重新评估","authors":"Yoshihisa Tahara, Haruka Hirano, Satoshi Chiba, Hiroyasu Mochizuki, Tatsuya Katabuchi","doi":"10.1080/00223131.2023.2282553","DOIUrl":null,"url":null,"abstract":"ABSTRACTA molten chloride salt fast reactor with inherent safety features is being studied in order to utilize spent fuel discharged from light-water reactors effectively and to reduce environmental burdens. A hard neutron spectrum is required to achieve the transmutation of TRU efficiently, which can be realized by using a molten chloride salt. However, it was found that the criticality analysis shows a large difference of 2%Δk among the effective multiplication factors (keff) obtained using several evaluated nuclear data libraries. A sensitivity analysis was performed to investigate the cause of the difference in keff and it was clarified that the difference of 2%Δk/k reactivity was due to the difference in cross sections of the 35Cl(n,p)35S reaction. Such a large difference in keff makes a reliable core design difficult and strongly affects important core characteristics such as the TRU transmutation rate, conversion ratio, and so on. Therefore, this paper has been prepared to make a strong request for measurements and re-evaluations of the (n,p) cross section of 35Cl.KEYWORDS: Molten salt reactorchloridefast reactortransmutationTRU35Cl(np) reactionDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsWe would like to thank Assistant Prof. Chikako Ishizuka at the Tokyo Institute of Technology for her helpful discussions, encouragement and also for computer maintenance to proceed calculations.Fig. 1 Conceptual design for 700-MWt reactor core with four heat exchangers (unit in meters).Display full sizeFig. 2 Bird’s-eye view of the reactor with four loops and a stainless steel reflector.Display full sizeFig. 3 Calculation model of the MCSFR.Display full sizeFig. 4 Average neutron spectrum in the core of the MCSFR.Display full sizeFig. 5 Sensitivities of keff to the reaction cross sections of 35Cl calculated using Serpent 2Display full sizeand ENDF/B-VIII.0.(n,p), (n,α), and (n,γ) cross sections(n,n) and (n,n’) cross sectionsFig. 6 Relative cross-section differences of 35Cl between ENDF/B-VIII.0 and JENDL-5.Display full sizeThe reference of the relative difference is ENDF/B-VIII.0.(n,p), (n,α), and (n,γ) cross sections(n,n) and (n,n’) cross sectionsFig. 7 Contribution of the relative difference in the (n,p) cross sections for 35Cl between ENDF/B-VIII.0 and JENDL-5 to reactivity.Display full sizeThe reference of the relative difference is ENDF/B-VIII.0.Fig. 8 Comparison of nuclear data libraries for the 35Cl (n,p) 35S reaction cross sections with the experimental values. There are three experimental values around 14 MeV: one of Schantl at 14.7 MeV (1970) [Citation21] and the other two of Nagel at 14.6 MeV (1966) [Citation22].Display full sizeFig. 9 Comparison of the 35Cl (n,p) 35S reaction cross sections of JENDL-4.0, JENDL-5, and ENDF/B-VIII.0 with the new experimental data.Display full sizeTable 4 Comparison of effective multiplication factors calculated using the differentnuclear data libraries.TableDownload CSVDisplay Table","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"39 14","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Request for <sup>35</sup> Cl(n,p) reaction cross-section measurements and re-evaluations from the standpoint of molten chloride salt fast reactor design\",\"authors\":\"Yoshihisa Tahara, Haruka Hirano, Satoshi Chiba, Hiroyasu Mochizuki, Tatsuya Katabuchi\",\"doi\":\"10.1080/00223131.2023.2282553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTA molten chloride salt fast reactor with inherent safety features is being studied in order to utilize spent fuel discharged from light-water reactors effectively and to reduce environmental burdens. A hard neutron spectrum is required to achieve the transmutation of TRU efficiently, which can be realized by using a molten chloride salt. However, it was found that the criticality analysis shows a large difference of 2%Δk among the effective multiplication factors (keff) obtained using several evaluated nuclear data libraries. A sensitivity analysis was performed to investigate the cause of the difference in keff and it was clarified that the difference of 2%Δk/k reactivity was due to the difference in cross sections of the 35Cl(n,p)35S reaction. Such a large difference in keff makes a reliable core design difficult and strongly affects important core characteristics such as the TRU transmutation rate, conversion ratio, and so on. Therefore, this paper has been prepared to make a strong request for measurements and re-evaluations of the (n,p) cross section of 35Cl.KEYWORDS: Molten salt reactorchloridefast reactortransmutationTRU35Cl(np) reactionDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsWe would like to thank Assistant Prof. Chikako Ishizuka at the Tokyo Institute of Technology for her helpful discussions, encouragement and also for computer maintenance to proceed calculations.Fig. 1 Conceptual design for 700-MWt reactor core with four heat exchangers (unit in meters).Display full sizeFig. 2 Bird’s-eye view of the reactor with four loops and a stainless steel reflector.Display full sizeFig. 3 Calculation model of the MCSFR.Display full sizeFig. 4 Average neutron spectrum in the core of the MCSFR.Display full sizeFig. 5 Sensitivities of keff to the reaction cross sections of 35Cl calculated using Serpent 2Display full sizeand ENDF/B-VIII.0.(n,p), (n,α), and (n,γ) cross sections(n,n) and (n,n’) cross sectionsFig. 6 Relative cross-section differences of 35Cl between ENDF/B-VIII.0 and JENDL-5.Display full sizeThe reference of the relative difference is ENDF/B-VIII.0.(n,p), (n,α), and (n,γ) cross sections(n,n) and (n,n’) cross sectionsFig. 7 Contribution of the relative difference in the (n,p) cross sections for 35Cl between ENDF/B-VIII.0 and JENDL-5 to reactivity.Display full sizeThe reference of the relative difference is ENDF/B-VIII.0.Fig. 8 Comparison of nuclear data libraries for the 35Cl (n,p) 35S reaction cross sections with the experimental values. There are three experimental values around 14 MeV: one of Schantl at 14.7 MeV (1970) [Citation21] and the other two of Nagel at 14.6 MeV (1966) [Citation22].Display full sizeFig. 9 Comparison of the 35Cl (n,p) 35S reaction cross sections of JENDL-4.0, JENDL-5, and ENDF/B-VIII.0 with the new experimental data.Display full sizeTable 4 Comparison of effective multiplication factors calculated using the differentnuclear data libraries.TableDownload CSVDisplay Table\",\"PeriodicalId\":16526,\"journal\":{\"name\":\"Journal of Nuclear Science and Technology\",\"volume\":\"39 14\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00223131.2023.2282553\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00223131.2023.2282553","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Request for 35 Cl(n,p) reaction cross-section measurements and re-evaluations from the standpoint of molten chloride salt fast reactor design
ABSTRACTA molten chloride salt fast reactor with inherent safety features is being studied in order to utilize spent fuel discharged from light-water reactors effectively and to reduce environmental burdens. A hard neutron spectrum is required to achieve the transmutation of TRU efficiently, which can be realized by using a molten chloride salt. However, it was found that the criticality analysis shows a large difference of 2%Δk among the effective multiplication factors (keff) obtained using several evaluated nuclear data libraries. A sensitivity analysis was performed to investigate the cause of the difference in keff and it was clarified that the difference of 2%Δk/k reactivity was due to the difference in cross sections of the 35Cl(n,p)35S reaction. Such a large difference in keff makes a reliable core design difficult and strongly affects important core characteristics such as the TRU transmutation rate, conversion ratio, and so on. Therefore, this paper has been prepared to make a strong request for measurements and re-evaluations of the (n,p) cross section of 35Cl.KEYWORDS: Molten salt reactorchloridefast reactortransmutationTRU35Cl(np) reactionDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsWe would like to thank Assistant Prof. Chikako Ishizuka at the Tokyo Institute of Technology for her helpful discussions, encouragement and also for computer maintenance to proceed calculations.Fig. 1 Conceptual design for 700-MWt reactor core with four heat exchangers (unit in meters).Display full sizeFig. 2 Bird’s-eye view of the reactor with four loops and a stainless steel reflector.Display full sizeFig. 3 Calculation model of the MCSFR.Display full sizeFig. 4 Average neutron spectrum in the core of the MCSFR.Display full sizeFig. 5 Sensitivities of keff to the reaction cross sections of 35Cl calculated using Serpent 2Display full sizeand ENDF/B-VIII.0.(n,p), (n,α), and (n,γ) cross sections(n,n) and (n,n’) cross sectionsFig. 6 Relative cross-section differences of 35Cl between ENDF/B-VIII.0 and JENDL-5.Display full sizeThe reference of the relative difference is ENDF/B-VIII.0.(n,p), (n,α), and (n,γ) cross sections(n,n) and (n,n’) cross sectionsFig. 7 Contribution of the relative difference in the (n,p) cross sections for 35Cl between ENDF/B-VIII.0 and JENDL-5 to reactivity.Display full sizeThe reference of the relative difference is ENDF/B-VIII.0.Fig. 8 Comparison of nuclear data libraries for the 35Cl (n,p) 35S reaction cross sections with the experimental values. There are three experimental values around 14 MeV: one of Schantl at 14.7 MeV (1970) [Citation21] and the other two of Nagel at 14.6 MeV (1966) [Citation22].Display full sizeFig. 9 Comparison of the 35Cl (n,p) 35S reaction cross sections of JENDL-4.0, JENDL-5, and ENDF/B-VIII.0 with the new experimental data.Display full sizeTable 4 Comparison of effective multiplication factors calculated using the differentnuclear data libraries.TableDownload CSVDisplay Table
期刊介绍:
The Journal of Nuclear Science and Technology (JNST) publishes internationally peer-reviewed papers that contribute to the exchange of research, ideas and developments in the field of nuclear science and technology, to contribute peaceful and sustainable development of the World.
JNST ’s broad scope covers a wide range of topics within its subject category, including but are not limited to:
General Issues related to Nuclear Power Utilization: Philosophy and Ethics, Justice and Policy, International Relation, Economical and Sociological Aspects, Environmental Aspects, Education, Documentation and Database, Nuclear Non-Proliferation, Safeguard
Radiation, Accelerator and Beam Technologies: Nuclear Physics, Nuclear Reaction for Engineering, Nuclear Data Measurement and Evaluation, Integral Verification/Validation and Benchmark on Nuclear Data, Radiation Behaviors and Shielding, Radiation Physics, Radiation Detection and Measurement, Accelerator and Beam Technology, Synchrotron Radiation, Medical Reactor and Accelerator, Neutron Source, Neutron Technology
Nuclear Reactor Physics: Reactor Physics Experiments, Reactor Neutronics Design and Evaluation, Reactor Analysis, Neutron Transport Calculation, Reactor Dynamics Experiment, Nuclear Criticality Safety, Fuel Burnup and Nuclear Transmutation,
Reactor Instrumentation and Control, Human-Machine System: Reactor Instrumentation and Control System, Human Factor, Control Room and Operator Interface Design, Remote Control, Robotics, Image Processing
Thermal Hydraulics: Thermal Hydraulic Experiment and Analysis, Thermal Hydraulic Design, Thermal Hydraulics of Single/Two/Multi Phase Flow, Interactive Phenomena with Fluid, Measurement Technology...etc.