晶体结构空腔中6p轨道的大可调自旋轨道效应

Mauro Fava, William Lafargue-Dit-Hauret, Aldo H. Romero, Eric Bousquet
{"title":"晶体结构空腔中6p轨道的大可调自旋轨道效应","authors":"Mauro Fava, William Lafargue-Dit-Hauret, Aldo H. Romero, Eric Bousquet","doi":"10.1103/physrevb.108.l201112","DOIUrl":null,"url":null,"abstract":"We explore from first-principles calculations the ferroelectric material ${\\mathrm{Pb}}_{5}{\\mathrm{Ge}}_{3}{\\mathrm{O}}_{11}$ as a model for controlling the spin-orbit interaction (SOC) in crystalline solids. The SOC has a surprisingly strong effect on the structural energy landscape by deepening the ferroelectric double well. We observe that this effect comes from a specific Pb Wyckoff site that lies on the verge of a natural cavity channel of the crystal. We also find that a unique cavity state is formed by the empty $6p$ states of another Pb site at the edge of the cavity channel. This cavity state exhibits a sizable spin splitting with a mixed Rashba-Weyl character and a topologically protected crossing of the related bands. We also show that the ferroelectric properties and the significant SOC effects are exceptionally robust in the presence of n-type doping at levels of up to several electrons per unit cell. We trace the provenance of these original effects to the unique combination of the structural cavity channel and the chemistry of the Pb atoms with $6p$ orbitals localizing inside the channel.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large and tunable spin-orbit effect of 6p orbitals through structural cavities in crystals\",\"authors\":\"Mauro Fava, William Lafargue-Dit-Hauret, Aldo H. Romero, Eric Bousquet\",\"doi\":\"10.1103/physrevb.108.l201112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore from first-principles calculations the ferroelectric material ${\\\\mathrm{Pb}}_{5}{\\\\mathrm{Ge}}_{3}{\\\\mathrm{O}}_{11}$ as a model for controlling the spin-orbit interaction (SOC) in crystalline solids. The SOC has a surprisingly strong effect on the structural energy landscape by deepening the ferroelectric double well. We observe that this effect comes from a specific Pb Wyckoff site that lies on the verge of a natural cavity channel of the crystal. We also find that a unique cavity state is formed by the empty $6p$ states of another Pb site at the edge of the cavity channel. This cavity state exhibits a sizable spin splitting with a mixed Rashba-Weyl character and a topologically protected crossing of the related bands. We also show that the ferroelectric properties and the significant SOC effects are exceptionally robust in the presence of n-type doping at levels of up to several electrons per unit cell. We trace the provenance of these original effects to the unique combination of the structural cavity channel and the chemistry of the Pb atoms with $6p$ orbitals localizing inside the channel.\",\"PeriodicalId\":20121,\"journal\":{\"name\":\"Physical Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.108.l201112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.108.l201112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从第一性原理计算中探索了铁电材料${\ mathm {Pb}}_{5}}{\ mathm {Ge}}_{3}{\ mathm {O}}_{11}$作为控制结晶固体中自旋轨道相互作用(SOC)的模型。SOC通过加深铁电双井对结构能量景观产生了惊人的强烈影响。我们观察到这种效应来自于一个特定的Pb Wyckoff位点,它位于晶体的一个自然腔通道的边缘。我们还发现一个独特的空腔态是由空腔通道边缘的另一个Pb位的空$6p$态形成的。这种腔态表现出相当大的自旋分裂,具有混合的Rashba-Weyl特征和相关能带的拓扑保护交叉。我们还表明,在n型掺杂的情况下,铁电性能和显著的SOC效应在每个单元电池中高达几个电子的水平下是异常稳健的。我们将这些原始效应的来源追溯到结构腔通道和Pb原子的化学性质的独特组合,其中$6p$轨道定位在通道内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large and tunable spin-orbit effect of 6p orbitals through structural cavities in crystals
We explore from first-principles calculations the ferroelectric material ${\mathrm{Pb}}_{5}{\mathrm{Ge}}_{3}{\mathrm{O}}_{11}$ as a model for controlling the spin-orbit interaction (SOC) in crystalline solids. The SOC has a surprisingly strong effect on the structural energy landscape by deepening the ferroelectric double well. We observe that this effect comes from a specific Pb Wyckoff site that lies on the verge of a natural cavity channel of the crystal. We also find that a unique cavity state is formed by the empty $6p$ states of another Pb site at the edge of the cavity channel. This cavity state exhibits a sizable spin splitting with a mixed Rashba-Weyl character and a topologically protected crossing of the related bands. We also show that the ferroelectric properties and the significant SOC effects are exceptionally robust in the presence of n-type doping at levels of up to several electrons per unit cell. We trace the provenance of these original effects to the unique combination of the structural cavity channel and the chemistry of the Pb atoms with $6p$ orbitals localizing inside the channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信