意大利水坝的洪水衰减潜力:对地貌和气候因素的敏感性

IF 3.9 3区 环境科学与生态学 Q1 ENGINEERING, CIVIL
Giulia Evangelista, Daniele Ganora, Paola Mazzoglio, Francesca Pianigiani, Pierluigi Claps
{"title":"意大利水坝的洪水衰减潜力:对地貌和气候因素的敏感性","authors":"Giulia Evangelista, Daniele Ganora, Paola Mazzoglio, Francesca Pianigiani, Pierluigi Claps","doi":"10.1007/s11269-023-03649-z","DOIUrl":null,"url":null,"abstract":"Abstract In this work the attenuation potential of flood peaks of 265 large reservoirs all over Italy is analysed, considering a flood management that excludes gates opening and then configures strictly unsupervised attenuation effects. Key factors of dams and related basins are considered to develop a ranking method that can emphasize the interplay between dam geometry and the hydrological processes acting in the upstream watershed. To maintain a homogeneous approach in such a wide geographic area, the attenuation index is computed applying the numerical solution of the differential equation of lakes and only two different standardized hydrograph shapes have been used. An index design flood from the rational method is used as the incoming peak value for each dam, enhancing the use of the results of a recent analysis of all Italian rainfall extremes. Even with a very simple approach, twenty-four different design incoming floods are derived, by varying the shape of the incoming hydrograph and the parameters of the rational method. Exploring the ranking results in all the alternatives, the attenuation potential obtained for all dams demonstrates to be strongly sensitive to the assumptions on the time of concentration and to some rainfall features. On the other hand, the hydrograph shape seems to exert much less influence on the ranking outcome. Results obtained can be useful to studies of wide-area flood frequency analyses, as we highlighted the sensitivity of the rank of attenuation efficiency to hydrologic parameters widely used in the assessment of the design flood peaks in ungauged basins.","PeriodicalId":23611,"journal":{"name":"Water Resources Management","volume":"88 17","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flood Attenuation Potential of Italian Dams: Sensitivity on Geomorphic and Climatological Factors\",\"authors\":\"Giulia Evangelista, Daniele Ganora, Paola Mazzoglio, Francesca Pianigiani, Pierluigi Claps\",\"doi\":\"10.1007/s11269-023-03649-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work the attenuation potential of flood peaks of 265 large reservoirs all over Italy is analysed, considering a flood management that excludes gates opening and then configures strictly unsupervised attenuation effects. Key factors of dams and related basins are considered to develop a ranking method that can emphasize the interplay between dam geometry and the hydrological processes acting in the upstream watershed. To maintain a homogeneous approach in such a wide geographic area, the attenuation index is computed applying the numerical solution of the differential equation of lakes and only two different standardized hydrograph shapes have been used. An index design flood from the rational method is used as the incoming peak value for each dam, enhancing the use of the results of a recent analysis of all Italian rainfall extremes. Even with a very simple approach, twenty-four different design incoming floods are derived, by varying the shape of the incoming hydrograph and the parameters of the rational method. Exploring the ranking results in all the alternatives, the attenuation potential obtained for all dams demonstrates to be strongly sensitive to the assumptions on the time of concentration and to some rainfall features. On the other hand, the hydrograph shape seems to exert much less influence on the ranking outcome. Results obtained can be useful to studies of wide-area flood frequency analyses, as we highlighted the sensitivity of the rank of attenuation efficiency to hydrologic parameters widely used in the assessment of the design flood peaks in ungauged basins.\",\"PeriodicalId\":23611,\"journal\":{\"name\":\"Water Resources Management\",\"volume\":\"88 17\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11269-023-03649-z\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11269-023-03649-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文分析了意大利265个大型水库的洪峰衰减潜力,考虑了排除闸门打开的洪水管理,然后配置严格的无监督衰减效应。考虑大坝和相关流域的关键因素,开发一种排序方法,可以强调大坝几何形状和上游流域水文过程之间的相互作用。为了在如此广阔的地理区域内保持均匀性,衰减指数是用湖泊微分方程的数值解来计算的,并且只使用了两种不同的标准化水文曲线形状。从理性方法的指数设计洪水被用作每个大坝的来水峰值,增强了最近对所有意大利极端降雨的分析结果的使用。即使是一个非常简单的方法,24种不同的设计来水洪水,通过改变来水的形状和合理方法的参数。在所有备选方案的排序结果中,所有水坝的衰减势对集中时间和某些降雨特征的假设非常敏感。另一方面,海线形状似乎对排名结果的影响要小得多。由于我们强调了衰减效率等级对水文参数的敏感性,这些参数广泛用于评估未测量流域的设计洪峰,因此所得结果可用于研究广域洪水频率分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flood Attenuation Potential of Italian Dams: Sensitivity on Geomorphic and Climatological Factors
Abstract In this work the attenuation potential of flood peaks of 265 large reservoirs all over Italy is analysed, considering a flood management that excludes gates opening and then configures strictly unsupervised attenuation effects. Key factors of dams and related basins are considered to develop a ranking method that can emphasize the interplay between dam geometry and the hydrological processes acting in the upstream watershed. To maintain a homogeneous approach in such a wide geographic area, the attenuation index is computed applying the numerical solution of the differential equation of lakes and only two different standardized hydrograph shapes have been used. An index design flood from the rational method is used as the incoming peak value for each dam, enhancing the use of the results of a recent analysis of all Italian rainfall extremes. Even with a very simple approach, twenty-four different design incoming floods are derived, by varying the shape of the incoming hydrograph and the parameters of the rational method. Exploring the ranking results in all the alternatives, the attenuation potential obtained for all dams demonstrates to be strongly sensitive to the assumptions on the time of concentration and to some rainfall features. On the other hand, the hydrograph shape seems to exert much less influence on the ranking outcome. Results obtained can be useful to studies of wide-area flood frequency analyses, as we highlighted the sensitivity of the rank of attenuation efficiency to hydrologic parameters widely used in the assessment of the design flood peaks in ungauged basins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Management
Water Resources Management 环境科学-工程:土木
CiteScore
7.40
自引率
16.30%
发文量
332
审稿时长
9 months
期刊介绍: Water Resources Management is an international, multidisciplinary forum for the publication of original contributions and the exchange of knowledge and experience on the management of water resources. In particular, the journal publishes contributions on water resources assessment, development, conservation and control, emphasizing policies and strategies. Contributions examine planning and design of water resource systems, and operation, maintenance and administration of water resource systems. Coverage extends to these closely related topics: water demand and consumption; applied surface and groundwater hydrology; water management techniques; simulation and modelling of water resource systems; forecasting and control of quantity and quality of water; economic and social aspects of water use; legislation and water resources protection. Water Resources Management is supported scientifically by the European Water Resources Association, a scientific and technical nonprofit-making European association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信