在纳米比亚斯坦普里特盆地北部萨凡纳的一个地点,用氘示踪剂测定木本植物的水分供应和活性根的深度

IF 2.4 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Shoopala Uugulu, Heike Wanke, Paul Koeniger
{"title":"在纳米比亚斯坦普里特盆地北部萨凡纳的一个地点,用氘示踪剂测定木本植物的水分供应和活性根的深度","authors":"Shoopala Uugulu, Heike Wanke, Paul Koeniger","doi":"10.1007/s10040-023-02747-x","DOIUrl":null,"url":null,"abstract":"Abstract Woody plants play a significant role in the global water cycle through water uptake by roots and evapotranspiration. A deuterium tracer was used to assess the active root depths for Salvia mellifera and Boscia albitrunca in the Ebenhaezer area (western Namibia). The tracer was inserted at different soil depths in December 2016. Xylem cores were obtained using an increment borer, and transpired water was collected using transpiration bags zipped around the plants’ leaves. Groundwater was collected from boreholes. Soil samples were collected after the rainy season using a hand auger. Xylem and soil water were extracted using a cryogenic vacuum extraction method and analysed for stable water isotopes. Only one S. mellifera transpiration sample showed a high deuterium content (516‰) where the tracer was inserted at 2.5-m soil depth. Elevated deuterium contents were observed in two S. mellifera xylem samples; tracer had been applied at 2.5 and 3 m depth (yielding 35 and 31‰ deuterium, respectively), which constitutes a possible active-root depth range for S. mellifera . At the end of the study period (May 2017), the average δ 18 O value for B. albitrunca xylem samples was similar to that of groundwater. The δ 18 O value for S. mellifera was between that of soil water and groundwater, indicating that this species uses groundwater and soil water available for groundwater recharge. Determination of the active root depth and source water for these species would help improve hydrological modelling by incorporating the influence of woody plants on groundwater recharge.","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":"82 5","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determinación del aporte de agua y de la profundidad de las raíces activas de plantas leñosas mediante un trazador de deuterio en un sitio de Savannah en el norte de la cuenca de Stampriet, Namibia\",\"authors\":\"Shoopala Uugulu, Heike Wanke, Paul Koeniger\",\"doi\":\"10.1007/s10040-023-02747-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Woody plants play a significant role in the global water cycle through water uptake by roots and evapotranspiration. A deuterium tracer was used to assess the active root depths for Salvia mellifera and Boscia albitrunca in the Ebenhaezer area (western Namibia). The tracer was inserted at different soil depths in December 2016. Xylem cores were obtained using an increment borer, and transpired water was collected using transpiration bags zipped around the plants’ leaves. Groundwater was collected from boreholes. Soil samples were collected after the rainy season using a hand auger. Xylem and soil water were extracted using a cryogenic vacuum extraction method and analysed for stable water isotopes. Only one S. mellifera transpiration sample showed a high deuterium content (516‰) where the tracer was inserted at 2.5-m soil depth. Elevated deuterium contents were observed in two S. mellifera xylem samples; tracer had been applied at 2.5 and 3 m depth (yielding 35 and 31‰ deuterium, respectively), which constitutes a possible active-root depth range for S. mellifera . At the end of the study period (May 2017), the average δ 18 O value for B. albitrunca xylem samples was similar to that of groundwater. The δ 18 O value for S. mellifera was between that of soil water and groundwater, indicating that this species uses groundwater and soil water available for groundwater recharge. Determination of the active root depth and source water for these species would help improve hydrological modelling by incorporating the influence of woody plants on groundwater recharge.\",\"PeriodicalId\":13013,\"journal\":{\"name\":\"Hydrogeology Journal\",\"volume\":\"82 5\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrogeology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10040-023-02747-x\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogeology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10040-023-02747-x","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

木本植物通过根系吸收水分和蒸腾作用在全球水循环中发挥重要作用。采用氘示踪法对纳米比亚西部Ebenhaezer地区鼠尾草(Salvia mellifera)和albitrunca的活性根深度进行了评价。该示踪剂于2016年12月在不同土壤深度插入。木质部核是用增量钻孔器获得的,蒸腾水是用在植物叶片周围的蒸腾袋收集的。地下水是从钻孔中收集的。雨季过后,用手钻采集土壤样本。采用低温真空萃取法提取木质部和土壤水分,分析稳定水同位素。当示踪剂插入2.5 m土壤深度时,只有一个蜜蜂蒸腾样品的氘含量较高(516‰)。两种蜜铃虫木质部样品中氘含量升高;示踪剂在2.5 m和3 m深度(分别产生35‰和31‰的氘)施用,这构成了蜜蜂可能的活动根深度范围。研究期结束时(2017年5月),白顶木质部样品的平均δ 18o值与地下水相似。蜜铃虫的δ 18o值介于土壤水和地下水的δ 18o值之间,表明蜜铃虫既利用地下水,又利用可补给地下水的土壤水。确定这些树种的有效根深和水源将有助于通过纳入木本植物对地下水补给的影响来改进水文模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Determinación del aporte de agua y de la profundidad de las raíces activas de plantas leñosas mediante un trazador de deuterio en un sitio de Savannah en el norte de la cuenca de Stampriet, Namibia

Determinación del aporte de agua y de la profundidad de las raíces activas de plantas leñosas mediante un trazador de deuterio en un sitio de Savannah en el norte de la cuenca de Stampriet, Namibia
Abstract Woody plants play a significant role in the global water cycle through water uptake by roots and evapotranspiration. A deuterium tracer was used to assess the active root depths for Salvia mellifera and Boscia albitrunca in the Ebenhaezer area (western Namibia). The tracer was inserted at different soil depths in December 2016. Xylem cores were obtained using an increment borer, and transpired water was collected using transpiration bags zipped around the plants’ leaves. Groundwater was collected from boreholes. Soil samples were collected after the rainy season using a hand auger. Xylem and soil water were extracted using a cryogenic vacuum extraction method and analysed for stable water isotopes. Only one S. mellifera transpiration sample showed a high deuterium content (516‰) where the tracer was inserted at 2.5-m soil depth. Elevated deuterium contents were observed in two S. mellifera xylem samples; tracer had been applied at 2.5 and 3 m depth (yielding 35 and 31‰ deuterium, respectively), which constitutes a possible active-root depth range for S. mellifera . At the end of the study period (May 2017), the average δ 18 O value for B. albitrunca xylem samples was similar to that of groundwater. The δ 18 O value for S. mellifera was between that of soil water and groundwater, indicating that this species uses groundwater and soil water available for groundwater recharge. Determination of the active root depth and source water for these species would help improve hydrological modelling by incorporating the influence of woody plants on groundwater recharge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrogeology Journal
Hydrogeology Journal 地学-地球科学综合
CiteScore
5.40
自引率
7.10%
发文量
128
审稿时长
6 months
期刊介绍: Hydrogeology Journal was founded in 1992 to foster understanding of hydrogeology; to describe worldwide progress in hydrogeology; and to provide an accessible forum for scientists, researchers, engineers, and practitioners in developing and industrialized countries. Since then, the journal has earned a large worldwide readership. Its peer-reviewed research articles integrate subsurface hydrology and geology with supporting disciplines: geochemistry, geophysics, geomorphology, geobiology, surface-water hydrology, tectonics, numerical modeling, economics, and sociology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信