{"title":"导数的增强移位雅可比运算矩阵:求解多项变阶分数阶微分方程的谱算法","authors":"H. M. Ahmed","doi":"10.1186/s13661-023-01796-1","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a new way to solve numerically multiterm variable-order fractional differential equations (MTVOFDEs) with initial conditions by using a class of modified shifted Jacobi polynomials (MSJPs). As their defining feature, MSJPs satisfy the given initial conditions. A key aspect of our methodology involves the construction of operational matrices (OMs) for ordinary derivatives (ODs) and variable-order fractional derivatives (VOFDs) of MSJPs and the application of the spectral collocation method (SCM). These constructions enable efficient and accurate numerical computation. We establish the error analysis and the convergence of the proposed algorithm, providing theoretical guarantees for its effectiveness. To demonstrate the applicability and accuracy of our method, we present five numerical examples. Through these examples, we compare the results obtained with other published results, confirming the superiority of our method in terms of accuracy and efficiency. The suggested algorithm yields very accurate agreement between the approximate and exact solutions, which are shown in tables and graphs.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":"62 2","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced shifted Jacobi operational matrices of derivatives: spectral algorithm for solving multiterm variable-order fractional differential equations\",\"authors\":\"H. M. Ahmed\",\"doi\":\"10.1186/s13661-023-01796-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a new way to solve numerically multiterm variable-order fractional differential equations (MTVOFDEs) with initial conditions by using a class of modified shifted Jacobi polynomials (MSJPs). As their defining feature, MSJPs satisfy the given initial conditions. A key aspect of our methodology involves the construction of operational matrices (OMs) for ordinary derivatives (ODs) and variable-order fractional derivatives (VOFDs) of MSJPs and the application of the spectral collocation method (SCM). These constructions enable efficient and accurate numerical computation. We establish the error analysis and the convergence of the proposed algorithm, providing theoretical guarantees for its effectiveness. To demonstrate the applicability and accuracy of our method, we present five numerical examples. Through these examples, we compare the results obtained with other published results, confirming the superiority of our method in terms of accuracy and efficiency. The suggested algorithm yields very accurate agreement between the approximate and exact solutions, which are shown in tables and graphs.\",\"PeriodicalId\":55333,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"62 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-023-01796-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13661-023-01796-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Enhanced shifted Jacobi operational matrices of derivatives: spectral algorithm for solving multiterm variable-order fractional differential equations
Abstract This paper presents a new way to solve numerically multiterm variable-order fractional differential equations (MTVOFDEs) with initial conditions by using a class of modified shifted Jacobi polynomials (MSJPs). As their defining feature, MSJPs satisfy the given initial conditions. A key aspect of our methodology involves the construction of operational matrices (OMs) for ordinary derivatives (ODs) and variable-order fractional derivatives (VOFDs) of MSJPs and the application of the spectral collocation method (SCM). These constructions enable efficient and accurate numerical computation. We establish the error analysis and the convergence of the proposed algorithm, providing theoretical guarantees for its effectiveness. To demonstrate the applicability and accuracy of our method, we present five numerical examples. Through these examples, we compare the results obtained with other published results, confirming the superiority of our method in terms of accuracy and efficiency. The suggested algorithm yields very accurate agreement between the approximate and exact solutions, which are shown in tables and graphs.
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.