导数的增强移位雅可比运算矩阵:求解多项变阶分数阶微分方程的谱算法

IF 1 4区 数学 Q1 MATHEMATICS
H. M. Ahmed
{"title":"导数的增强移位雅可比运算矩阵:求解多项变阶分数阶微分方程的谱算法","authors":"H. M. Ahmed","doi":"10.1186/s13661-023-01796-1","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a new way to solve numerically multiterm variable-order fractional differential equations (MTVOFDEs) with initial conditions by using a class of modified shifted Jacobi polynomials (MSJPs). As their defining feature, MSJPs satisfy the given initial conditions. A key aspect of our methodology involves the construction of operational matrices (OMs) for ordinary derivatives (ODs) and variable-order fractional derivatives (VOFDs) of MSJPs and the application of the spectral collocation method (SCM). These constructions enable efficient and accurate numerical computation. We establish the error analysis and the convergence of the proposed algorithm, providing theoretical guarantees for its effectiveness. To demonstrate the applicability and accuracy of our method, we present five numerical examples. Through these examples, we compare the results obtained with other published results, confirming the superiority of our method in terms of accuracy and efficiency. The suggested algorithm yields very accurate agreement between the approximate and exact solutions, which are shown in tables and graphs.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":"62 2","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced shifted Jacobi operational matrices of derivatives: spectral algorithm for solving multiterm variable-order fractional differential equations\",\"authors\":\"H. M. Ahmed\",\"doi\":\"10.1186/s13661-023-01796-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a new way to solve numerically multiterm variable-order fractional differential equations (MTVOFDEs) with initial conditions by using a class of modified shifted Jacobi polynomials (MSJPs). As their defining feature, MSJPs satisfy the given initial conditions. A key aspect of our methodology involves the construction of operational matrices (OMs) for ordinary derivatives (ODs) and variable-order fractional derivatives (VOFDs) of MSJPs and the application of the spectral collocation method (SCM). These constructions enable efficient and accurate numerical computation. We establish the error analysis and the convergence of the proposed algorithm, providing theoretical guarantees for its effectiveness. To demonstrate the applicability and accuracy of our method, we present five numerical examples. Through these examples, we compare the results obtained with other published results, confirming the superiority of our method in terms of accuracy and efficiency. The suggested algorithm yields very accurate agreement between the approximate and exact solutions, which are shown in tables and graphs.\",\"PeriodicalId\":55333,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"62 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-023-01796-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13661-023-01796-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用一类修正移位雅可比多项式(MSJPs),提出了一种求解具有初始条件的数值多项变阶分数阶微分方程的新方法。作为它们的定义特征,msjp满足给定的初始条件。我们的方法的一个关键方面涉及到MSJPs的普通导数(ODs)和变阶分数导数(VOFDs)的操作矩阵(OMs)的构建和光谱搭配法(SCM)的应用。这些结构使数值计算变得高效和精确。建立了算法的误差分析和收敛性,为算法的有效性提供了理论保证。为了证明本文方法的适用性和准确性,给出了五个数值算例。通过这些算例,我们将得到的结果与其他已发表的结果进行了比较,证实了我们的方法在精度和效率方面的优越性。所建议的算法在近似解和精确解之间产生非常精确的一致性,这些解以表格和图表的形式显示出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced shifted Jacobi operational matrices of derivatives: spectral algorithm for solving multiterm variable-order fractional differential equations
Abstract This paper presents a new way to solve numerically multiterm variable-order fractional differential equations (MTVOFDEs) with initial conditions by using a class of modified shifted Jacobi polynomials (MSJPs). As their defining feature, MSJPs satisfy the given initial conditions. A key aspect of our methodology involves the construction of operational matrices (OMs) for ordinary derivatives (ODs) and variable-order fractional derivatives (VOFDs) of MSJPs and the application of the spectral collocation method (SCM). These constructions enable efficient and accurate numerical computation. We establish the error analysis and the convergence of the proposed algorithm, providing theoretical guarantees for its effectiveness. To demonstrate the applicability and accuracy of our method, we present five numerical examples. Through these examples, we compare the results obtained with other published results, confirming the superiority of our method in terms of accuracy and efficiency. The suggested algorithm yields very accurate agreement between the approximate and exact solutions, which are shown in tables and graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems 数学-数学
自引率
5.90%
发文量
83
审稿时长
3 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信