体和边界驱动系统中的解缠结耗散和哈密顿效应

D. R. Michiel Renger, Upanshu Sharma
{"title":"体和边界驱动系统中的解缠结耗散和哈密顿效应","authors":"D. R. Michiel Renger, Upanshu Sharma","doi":"10.1103/physreve.108.054123","DOIUrl":null,"url":null,"abstract":"Using the theory of large deviations, macroscopic fluctuation theory provides a framework to understand the behavior of nonequilibrium dynamics and steady states in diffusive systems. We extend this framework to a minimal model of a nonequilibrium nondiffusive system, specifically an open linear network on a finite graph. We explicitly calculate the dissipative bulk and boundary forces that drive the system towards the steady state, and the nondissipative bulk and boundary forces that drive the system in orbits around the steady state. Using the fact that these forces are orthogonal in a certain sense, we provide a decomposition of the large-deviation cost into dissipative and nondissipative terms. We establish that the purely nondissipative force turns the dynamics into a Hamiltonian system. These theoretical findings are illustrated by numerical examples.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":"42 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Untangling dissipative and Hamiltonian effects in bulk and boundary-driven systems\",\"authors\":\"D. R. Michiel Renger, Upanshu Sharma\",\"doi\":\"10.1103/physreve.108.054123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the theory of large deviations, macroscopic fluctuation theory provides a framework to understand the behavior of nonequilibrium dynamics and steady states in diffusive systems. We extend this framework to a minimal model of a nonequilibrium nondiffusive system, specifically an open linear network on a finite graph. We explicitly calculate the dissipative bulk and boundary forces that drive the system towards the steady state, and the nondissipative bulk and boundary forces that drive the system in orbits around the steady state. Using the fact that these forces are orthogonal in a certain sense, we provide a decomposition of the large-deviation cost into dissipative and nondissipative terms. We establish that the purely nondissipative force turns the dynamics into a Hamiltonian system. These theoretical findings are illustrated by numerical examples.\",\"PeriodicalId\":20121,\"journal\":{\"name\":\"Physical Review\",\"volume\":\"42 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.108.054123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.108.054123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用大偏差理论,宏观涨落理论为理解扩散系统的非平衡动力学和稳态行为提供了一个框架。我们将这一框架推广到非平衡非扩散系统的极小模型,特别是有限图上的开放线性网络。我们明确地计算了驱动系统走向稳态的耗散体积和边界力,以及驱动系统绕稳态轨道运行的非耗散体积和边界力。利用这些力在一定意义上是正交的这一事实,我们将大偏差代价分解为耗散项和非耗散项。我们建立了纯非耗散力将动力学转化为哈密顿系统。通过数值算例说明了这些理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Untangling dissipative and Hamiltonian effects in bulk and boundary-driven systems
Using the theory of large deviations, macroscopic fluctuation theory provides a framework to understand the behavior of nonequilibrium dynamics and steady states in diffusive systems. We extend this framework to a minimal model of a nonequilibrium nondiffusive system, specifically an open linear network on a finite graph. We explicitly calculate the dissipative bulk and boundary forces that drive the system towards the steady state, and the nondissipative bulk and boundary forces that drive the system in orbits around the steady state. Using the fact that these forces are orthogonal in a certain sense, we provide a decomposition of the large-deviation cost into dissipative and nondissipative terms. We establish that the purely nondissipative force turns the dynamics into a Hamiltonian system. These theoretical findings are illustrated by numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信