{"title":"有序Banach空间中时滞非局部条件演化方程的单调迭代技术","authors":"Haide Gou","doi":"10.1080/17442508.2023.2280693","DOIUrl":null,"url":null,"abstract":"AbstractIn this paper, based on monotone iterative method in the presence of the lower and upper solutions, we investigate the existence and uniqueness of the S-asymptotically ω-periodic mild solutions to a class of nonlocal problems of evolution equations with delay in ordered Banach spaces. Firstly, we introduce the concept of lower S-asymptotically ω-periodic solution and upper S-asymptotically ω-periodic solution. Secondly, we construct monotone iterative method in the presence of the lower and upper solutions to evolution equations with delay, and obtain the existence of maximal and minimal S-asymptotically ω-periodic mild solutions for the mentioned system under wide monotone conditions and noncompactness measure condition of nonlinear term. Finally, as the application of abstract results, an example is given to illustrate our main results.Keywords: Evolution equationsdelaynonlocal problemsmonotone iterative techniqueC0-semigroupS-asymptotically ω-periodic mild solutionsMathematics Subject Classifications: 35R1235K9047D06 Data availability statementMy manuscript has no associate data.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by the National Natural Science Foundation of China [No. 12061062], Science Research Project for Colleges and Universities of Gansu Province [No. 2022A-010].","PeriodicalId":49269,"journal":{"name":"Stochastics-An International Journal of Probability and Stochastic Processes","volume":"14 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotone iterative technique for evolution equations with delay and nonlocal conditions in ordered Banach space\",\"authors\":\"Haide Gou\",\"doi\":\"10.1080/17442508.2023.2280693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn this paper, based on monotone iterative method in the presence of the lower and upper solutions, we investigate the existence and uniqueness of the S-asymptotically ω-periodic mild solutions to a class of nonlocal problems of evolution equations with delay in ordered Banach spaces. Firstly, we introduce the concept of lower S-asymptotically ω-periodic solution and upper S-asymptotically ω-periodic solution. Secondly, we construct monotone iterative method in the presence of the lower and upper solutions to evolution equations with delay, and obtain the existence of maximal and minimal S-asymptotically ω-periodic mild solutions for the mentioned system under wide monotone conditions and noncompactness measure condition of nonlinear term. Finally, as the application of abstract results, an example is given to illustrate our main results.Keywords: Evolution equationsdelaynonlocal problemsmonotone iterative techniqueC0-semigroupS-asymptotically ω-periodic mild solutionsMathematics Subject Classifications: 35R1235K9047D06 Data availability statementMy manuscript has no associate data.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by the National Natural Science Foundation of China [No. 12061062], Science Research Project for Colleges and Universities of Gansu Province [No. 2022A-010].\",\"PeriodicalId\":49269,\"journal\":{\"name\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2023.2280693\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics-An International Journal of Probability and Stochastic Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17442508.2023.2280693","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Monotone iterative technique for evolution equations with delay and nonlocal conditions in ordered Banach space
AbstractIn this paper, based on monotone iterative method in the presence of the lower and upper solutions, we investigate the existence and uniqueness of the S-asymptotically ω-periodic mild solutions to a class of nonlocal problems of evolution equations with delay in ordered Banach spaces. Firstly, we introduce the concept of lower S-asymptotically ω-periodic solution and upper S-asymptotically ω-periodic solution. Secondly, we construct monotone iterative method in the presence of the lower and upper solutions to evolution equations with delay, and obtain the existence of maximal and minimal S-asymptotically ω-periodic mild solutions for the mentioned system under wide monotone conditions and noncompactness measure condition of nonlinear term. Finally, as the application of abstract results, an example is given to illustrate our main results.Keywords: Evolution equationsdelaynonlocal problemsmonotone iterative techniqueC0-semigroupS-asymptotically ω-periodic mild solutionsMathematics Subject Classifications: 35R1235K9047D06 Data availability statementMy manuscript has no associate data.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by the National Natural Science Foundation of China [No. 12061062], Science Research Project for Colleges and Universities of Gansu Province [No. 2022A-010].
期刊介绍:
Stochastics: An International Journal of Probability and Stochastic Processes is a world-leading journal publishing research concerned with stochastic processes and their applications in the modelling, analysis and optimization of stochastic systems, i.e. processes characterized both by temporal or spatial evolution and by the presence of random effects.
Articles are published dealing with all aspects of stochastic systems analysis, characterization problems, stochastic modelling and identification, optimization, filtering and control and with related questions in the theory of stochastic processes. The journal also solicits papers dealing with significant applications of stochastic process theory to problems in engineering systems, the physical and life sciences, economics and other areas. Proposals for special issues in cutting-edge areas are welcome and should be directed to the Editor-in-Chief who will review accordingly.
In recent years there has been a growing interaction between current research in probability theory and problems in stochastic systems. The objective of Stochastics is to encourage this trend, promoting an awareness of the latest theoretical developments on the one hand and of mathematical problems arising in applications on the other.