分析社交网络上错误信息的传播:一种检测和分析的过程和软件架构

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zafer Duzen, Mirela Riveni, Mehmet S. Aktas
{"title":"分析社交网络上错误信息的传播:一种检测和分析的过程和软件架构","authors":"Zafer Duzen, Mirela Riveni, Mehmet S. Aktas","doi":"10.3390/computers12110232","DOIUrl":null,"url":null,"abstract":"The rapid dissemination of misinformation on social networks, particularly during public health crises like the COVID-19 pandemic, has become a significant concern. This study investigates the spread of misinformation on social network data using social network analysis (SNA) metrics, and more generally by using well known network science metrics. Moreover, we propose a process design that utilizes social network data from Twitter, to analyze the involvement of non-trusted accounts in spreading misinformation supported by a proof-of-concept prototype. The proposed prototype includes modules for data collection, data preprocessing, network creation, centrality calculation, community detection, and misinformation spreading analysis. We conducted an experimental study on a COVID-19-related Twitter dataset using the modules. The results demonstrate the effectiveness of our approach and process steps, and provides valuable insight into the application of network science metrics on social network data for analysing various influence-parameters in misinformation spreading.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"28 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing the Spread of Misinformation on Social Networks: A Process and Software Architecture for Detection and Analysis\",\"authors\":\"Zafer Duzen, Mirela Riveni, Mehmet S. Aktas\",\"doi\":\"10.3390/computers12110232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid dissemination of misinformation on social networks, particularly during public health crises like the COVID-19 pandemic, has become a significant concern. This study investigates the spread of misinformation on social network data using social network analysis (SNA) metrics, and more generally by using well known network science metrics. Moreover, we propose a process design that utilizes social network data from Twitter, to analyze the involvement of non-trusted accounts in spreading misinformation supported by a proof-of-concept prototype. The proposed prototype includes modules for data collection, data preprocessing, network creation, centrality calculation, community detection, and misinformation spreading analysis. We conducted an experimental study on a COVID-19-related Twitter dataset using the modules. The results demonstrate the effectiveness of our approach and process steps, and provides valuable insight into the application of network science metrics on social network data for analysing various influence-parameters in misinformation spreading.\",\"PeriodicalId\":46292,\"journal\":{\"name\":\"Computers\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computers12110232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12110232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

社交网络上错误信息的迅速传播,特别是在COVID-19大流行等公共卫生危机期间,已成为一个重大问题。本研究使用社会网络分析(SNA)指标,更普遍地使用众所周知的网络科学指标,调查社交网络数据中错误信息的传播。此外,我们提出了一种利用Twitter社交网络数据的流程设计,通过概念验证原型来分析不受信任帐户在传播错误信息中的参与程度。提出的原型包括数据收集、数据预处理、网络创建、中心性计算、社区检测和错误信息传播分析等模块。我们使用这些模块对与covid -19相关的Twitter数据集进行了实验研究。结果证明了我们的方法和流程步骤的有效性,并为网络科学指标在社交网络数据上的应用提供了有价值的见解,以分析错误信息传播中的各种影响参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the Spread of Misinformation on Social Networks: A Process and Software Architecture for Detection and Analysis
The rapid dissemination of misinformation on social networks, particularly during public health crises like the COVID-19 pandemic, has become a significant concern. This study investigates the spread of misinformation on social network data using social network analysis (SNA) metrics, and more generally by using well known network science metrics. Moreover, we propose a process design that utilizes social network data from Twitter, to analyze the involvement of non-trusted accounts in spreading misinformation supported by a proof-of-concept prototype. The proposed prototype includes modules for data collection, data preprocessing, network creation, centrality calculation, community detection, and misinformation spreading analysis. We conducted an experimental study on a COVID-19-related Twitter dataset using the modules. The results demonstrate the effectiveness of our approach and process steps, and provides valuable insight into the application of network science metrics on social network data for analysing various influence-parameters in misinformation spreading.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers
Computers COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.40
自引率
3.60%
发文量
153
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信