{"title":"基于模型预测控制和双层模糊控制策略的组合蓄风系统跟踪调度","authors":"Jingyu Yang, Tongguang Yang, Longfu Luo, Li Peng","doi":"10.1186/s41601-023-00334-6","DOIUrl":null,"url":null,"abstract":"Abstract To maximize improving the tracking wind power output plan and the service life of energy storage systems (ESS), a control strategy is proposed for ESS to track wind power planning output based on model prediction and two-layer fuzzy control. First, based on model predictive control, a model with deviations of grid-connected power from the planned output and the minimum deviation of the remaining capacity of the ESS from the ideal value is established as the target. Then, when the grid-connected power exceeds the allowable deviation band of tracking, the weight coefficients in the objective function are adjusted by introducing the first layer of fuzzy control rules, combining the state of charge (SOC) of the ESS with the dynamic tracking demand of the planned value of wind power. When the grid-connected power is within the tracking allowable deviation band, the second layer of fuzzy control rules is used to correct the charging and discharging power of the ESS to improve its ability to track the future planned deviation while not crossing the limit. By repeatedly correcting the charging and discharging power of the ESS, its safe operation and the multitasking execution of the wind power plan output tracking target are ensured. Finally, taking actual data from a wind farm as an example, tests on a simulation platform of a combined wind-storage power generation system verify the feasibility and superiority of the proposed control strategy.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"85 10","pages":"0"},"PeriodicalIF":8.7000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking-dispatch of a combined wind-storage system based on model predictive control and two-layer fuzzy control strategy\",\"authors\":\"Jingyu Yang, Tongguang Yang, Longfu Luo, Li Peng\",\"doi\":\"10.1186/s41601-023-00334-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To maximize improving the tracking wind power output plan and the service life of energy storage systems (ESS), a control strategy is proposed for ESS to track wind power planning output based on model prediction and two-layer fuzzy control. First, based on model predictive control, a model with deviations of grid-connected power from the planned output and the minimum deviation of the remaining capacity of the ESS from the ideal value is established as the target. Then, when the grid-connected power exceeds the allowable deviation band of tracking, the weight coefficients in the objective function are adjusted by introducing the first layer of fuzzy control rules, combining the state of charge (SOC) of the ESS with the dynamic tracking demand of the planned value of wind power. When the grid-connected power is within the tracking allowable deviation band, the second layer of fuzzy control rules is used to correct the charging and discharging power of the ESS to improve its ability to track the future planned deviation while not crossing the limit. By repeatedly correcting the charging and discharging power of the ESS, its safe operation and the multitasking execution of the wind power plan output tracking target are ensured. Finally, taking actual data from a wind farm as an example, tests on a simulation platform of a combined wind-storage power generation system verify the feasibility and superiority of the proposed control strategy.\",\"PeriodicalId\":51639,\"journal\":{\"name\":\"Protection and Control of Modern Power Systems\",\"volume\":\"85 10\",\"pages\":\"0\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protection and Control of Modern Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41601-023-00334-6\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protection and Control of Modern Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41601-023-00334-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Tracking-dispatch of a combined wind-storage system based on model predictive control and two-layer fuzzy control strategy
Abstract To maximize improving the tracking wind power output plan and the service life of energy storage systems (ESS), a control strategy is proposed for ESS to track wind power planning output based on model prediction and two-layer fuzzy control. First, based on model predictive control, a model with deviations of grid-connected power from the planned output and the minimum deviation of the remaining capacity of the ESS from the ideal value is established as the target. Then, when the grid-connected power exceeds the allowable deviation band of tracking, the weight coefficients in the objective function are adjusted by introducing the first layer of fuzzy control rules, combining the state of charge (SOC) of the ESS with the dynamic tracking demand of the planned value of wind power. When the grid-connected power is within the tracking allowable deviation band, the second layer of fuzzy control rules is used to correct the charging and discharging power of the ESS to improve its ability to track the future planned deviation while not crossing the limit. By repeatedly correcting the charging and discharging power of the ESS, its safe operation and the multitasking execution of the wind power plan output tracking target are ensured. Finally, taking actual data from a wind farm as an example, tests on a simulation platform of a combined wind-storage power generation system verify the feasibility and superiority of the proposed control strategy.
期刊介绍:
Protection and Control of Modern Power Systems (PCMP) is the first international modern power system protection and control journal originated in China. The journal is dedicated to presenting top-level academic achievements in this field and aims to provide a platform for international researchers and engineers, with a special focus on authors from China, to maximize the papers' impact worldwide and contribute to the development of the power industry. PCMP is sponsored by Xuchang Ketop Electrical Research Institute and is edited and published by Power System Protection and Control Press.
PCMP focuses on advanced views, techniques, methodologies, and experience in the field of protection and control of modern power systems to showcase the latest technological achievements. However, it is important to note that the journal will cease to be published by SpringerOpen as of 31 December 2023. Nonetheless, it will continue in cooperation with a new publisher.