Nibedita Samal, R. Ashwin, Qichun Yang, Ankit Singh, Sanjeev Kumar Jha, Q. J. Wang
{"title":"利用季节相干定标模式的后处理定量降水预报","authors":"Nibedita Samal, R. Ashwin, Qichun Yang, Ankit Singh, Sanjeev Kumar Jha, Q. J. Wang","doi":"10.1080/15715124.2023.2218094","DOIUrl":null,"url":null,"abstract":"Skilful precipitation ensemble forecasts are necessary to produce trustworthy hydrologic predictions. Raw quantitative precipitation forecasts (QPFs) from the numerical weather prediction (NWP) models are known to be error-prone. In this study, sub-basin averaged deterministic QPFs with five-day lead times from the European Centre for Medium-Range Weather Forecasts (ECMWF) are post-processed through the Seasonally Coherent Calibration (SCC) model for the Narmada and Godavari River basins of India. The SCC model incorporates seasonal climatology from long observations into forecasts and produces calibrated forecasts based on a joint probability model. The SCC model results are compared with the post-processed forecasts from the state-of-the-art Quantile Mapping (QM) method. The results suggest that the probabilistic ensemble forecasts generated from the SCC model have improved skill throughout five-day lead times. Further, the application of SCC-calibrated precipitation forecasts is demonstrated using the Soil & Water Assessment Tool (SWAT) to generate streamflow forecasts.","PeriodicalId":14344,"journal":{"name":"International Journal of River Basin Management","volume":"78 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-processing quantitative precipitation forecasts using the seasonally coherent calibration model\",\"authors\":\"Nibedita Samal, R. Ashwin, Qichun Yang, Ankit Singh, Sanjeev Kumar Jha, Q. J. Wang\",\"doi\":\"10.1080/15715124.2023.2218094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skilful precipitation ensemble forecasts are necessary to produce trustworthy hydrologic predictions. Raw quantitative precipitation forecasts (QPFs) from the numerical weather prediction (NWP) models are known to be error-prone. In this study, sub-basin averaged deterministic QPFs with five-day lead times from the European Centre for Medium-Range Weather Forecasts (ECMWF) are post-processed through the Seasonally Coherent Calibration (SCC) model for the Narmada and Godavari River basins of India. The SCC model incorporates seasonal climatology from long observations into forecasts and produces calibrated forecasts based on a joint probability model. The SCC model results are compared with the post-processed forecasts from the state-of-the-art Quantile Mapping (QM) method. The results suggest that the probabilistic ensemble forecasts generated from the SCC model have improved skill throughout five-day lead times. Further, the application of SCC-calibrated precipitation forecasts is demonstrated using the Soil & Water Assessment Tool (SWAT) to generate streamflow forecasts.\",\"PeriodicalId\":14344,\"journal\":{\"name\":\"International Journal of River Basin Management\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of River Basin Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15715124.2023.2218094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of River Basin Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15715124.2023.2218094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Post-processing quantitative precipitation forecasts using the seasonally coherent calibration model
Skilful precipitation ensemble forecasts are necessary to produce trustworthy hydrologic predictions. Raw quantitative precipitation forecasts (QPFs) from the numerical weather prediction (NWP) models are known to be error-prone. In this study, sub-basin averaged deterministic QPFs with five-day lead times from the European Centre for Medium-Range Weather Forecasts (ECMWF) are post-processed through the Seasonally Coherent Calibration (SCC) model for the Narmada and Godavari River basins of India. The SCC model incorporates seasonal climatology from long observations into forecasts and produces calibrated forecasts based on a joint probability model. The SCC model results are compared with the post-processed forecasts from the state-of-the-art Quantile Mapping (QM) method. The results suggest that the probabilistic ensemble forecasts generated from the SCC model have improved skill throughout five-day lead times. Further, the application of SCC-calibrated precipitation forecasts is demonstrated using the Soil & Water Assessment Tool (SWAT) to generate streamflow forecasts.
期刊介绍:
include, but are not limited to new developments or applications in the following areas: AREAS OF INTEREST - integrated water resources management - watershed land use planning and management - spatial planning and management of floodplains - flood forecasting and flood risk management - drought forecasting and drought management - floodplain, river and estuarine restoration - climate change impact prediction and planning of remedial measures - management of mountain rivers - water quality management including non point source pollution - operation strategies for engineered river systems - maintenance strategies for river systems and for structures - project-affected-people and stakeholder participation - conservation of natural and cultural heritage