{"title":"几乎没有有限的整数子集包含$q^{\\text{th}}$幂模几乎所有素数","authors":"Bhawesh Mishra","doi":"10.7169/facm/2122","DOIUrl":null,"url":null,"abstract":"Let $q$ be a prime. We give an elementary proof of the fact that for any $k\\in\\mathbb{N}$, the proportion of $k$-element subsets of $\\mathbb{Z}$ that contain a $q^{\\text{th}}$ power modulo almost every prime, is zero. This result holds regardless of whether the proportion is measured additively or multiplicatively. More specifically, the number of $k$-element subsets of $[-N, N]\\cap\\mathbb{Z}$ that contain a $q^{\\text{th}}$ power modulo almost every prime is no larger than $a_{q,k} N^{k-(1-\\frac{1}{q})}$, for some positive constant $a_{q,k}$. Furthermore, the number of $k$-element subsets of $\\{\\pm p_{1}^{e_{1}} p_{2}^{e_{2}} \\cdots p_N^{e_N} : 0 \\leq e_{1}, e_{2}, \\ldots, e_N\\leq N\\}$ that contain a $q^{\\text{th}}$ power modulo almost every prime is no larger than $m_{q,k} \\frac{N^{Nk}}{q^N}$ for some positive constant $m_{q,k}$.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost no finite subset of integers containsa $q^{\\\\text{th}}$ power modulo almost every prime\",\"authors\":\"Bhawesh Mishra\",\"doi\":\"10.7169/facm/2122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $q$ be a prime. We give an elementary proof of the fact that for any $k\\\\in\\\\mathbb{N}$, the proportion of $k$-element subsets of $\\\\mathbb{Z}$ that contain a $q^{\\\\text{th}}$ power modulo almost every prime, is zero. This result holds regardless of whether the proportion is measured additively or multiplicatively. More specifically, the number of $k$-element subsets of $[-N, N]\\\\cap\\\\mathbb{Z}$ that contain a $q^{\\\\text{th}}$ power modulo almost every prime is no larger than $a_{q,k} N^{k-(1-\\\\frac{1}{q})}$, for some positive constant $a_{q,k}$. Furthermore, the number of $k$-element subsets of $\\\\{\\\\pm p_{1}^{e_{1}} p_{2}^{e_{2}} \\\\cdots p_N^{e_N} : 0 \\\\leq e_{1}, e_{2}, \\\\ldots, e_N\\\\leq N\\\\}$ that contain a $q^{\\\\text{th}}$ power modulo almost every prime is no larger than $m_{q,k} \\\\frac{N^{Nk}}{q^N}$ for some positive constant $m_{q,k}$.\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/2122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Almost no finite subset of integers containsa $q^{\text{th}}$ power modulo almost every prime
Let $q$ be a prime. We give an elementary proof of the fact that for any $k\in\mathbb{N}$, the proportion of $k$-element subsets of $\mathbb{Z}$ that contain a $q^{\text{th}}$ power modulo almost every prime, is zero. This result holds regardless of whether the proportion is measured additively or multiplicatively. More specifically, the number of $k$-element subsets of $[-N, N]\cap\mathbb{Z}$ that contain a $q^{\text{th}}$ power modulo almost every prime is no larger than $a_{q,k} N^{k-(1-\frac{1}{q})}$, for some positive constant $a_{q,k}$. Furthermore, the number of $k$-element subsets of $\{\pm p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_N^{e_N} : 0 \leq e_{1}, e_{2}, \ldots, e_N\leq N\}$ that contain a $q^{\text{th}}$ power modulo almost every prime is no larger than $m_{q,k} \frac{N^{Nk}}{q^N}$ for some positive constant $m_{q,k}$.