{"title":"从大规模高分辨率集合气候数据集评估极端局部地形风及其未来变化","authors":"Yoshikazu Kitano, Masamichi Ohba, Naohiro Soda, Yasuo Hattori, Tsuyoshi Hoshino, Tomohito J. Yamada","doi":"10.3178/hrl.17.69","DOIUrl":null,"url":null,"abstract":"The estimation of extreme wind speeds, their directional variation, and potential future changes is essential for wind-resistant design and is possible using climate models. Accurate evaluations of local topographic winds such as downslope windstorms and gap winds require high-resolution calculation and many ensemble years. However, few climate databases satisfy both requirements and none have been validated for extreme wind speeds.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of extreme local topographic winds and their future changes from a massive high-resolution ensemble climate dataset\",\"authors\":\"Yoshikazu Kitano, Masamichi Ohba, Naohiro Soda, Yasuo Hattori, Tsuyoshi Hoshino, Tomohito J. Yamada\",\"doi\":\"10.3178/hrl.17.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation of extreme wind speeds, their directional variation, and potential future changes is essential for wind-resistant design and is possible using climate models. Accurate evaluations of local topographic winds such as downslope windstorms and gap winds require high-resolution calculation and many ensemble years. However, few climate databases satisfy both requirements and none have been validated for extreme wind speeds.\",\"PeriodicalId\":13111,\"journal\":{\"name\":\"Hydrological Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3178/hrl.17.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/hrl.17.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Assessment of extreme local topographic winds and their future changes from a massive high-resolution ensemble climate dataset
The estimation of extreme wind speeds, their directional variation, and potential future changes is essential for wind-resistant design and is possible using climate models. Accurate evaluations of local topographic winds such as downslope windstorms and gap winds require high-resolution calculation and many ensemble years. However, few climate databases satisfy both requirements and none have been validated for extreme wind speeds.
期刊介绍:
Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.