利用巴拿赫空间的尺度研究部分积分微分包体的渐近概周期温和解

Q3 Mathematics
Jaouad El Matloub, Khalil Ezzinbi
{"title":"利用巴拿赫空间的尺度研究部分积分微分包体的渐近概周期温和解","authors":"Jaouad El Matloub, Khalil Ezzinbi","doi":"10.1515/msds-2023-0102","DOIUrl":null,"url":null,"abstract":"Abstract We are interested in the existence of mild solutions for a class of partial integrodifferential inclusions in infinite dimensional Banach spaces. First, we show the existence of mild solutions with the help of a scale of Banach spaces, the theory of resolvent operators, and the fixed point theory for the measure of non-compactness. Moreover, we examine the existence of asymptotically almost periodic solutions for our problem. Finally, an example of the abstract results is provided.","PeriodicalId":30985,"journal":{"name":"Nonautonomous Dynamical Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotically almost periodic mild solutions for some partial integrodifferential inclusions using scale of Banach spaces\",\"authors\":\"Jaouad El Matloub, Khalil Ezzinbi\",\"doi\":\"10.1515/msds-2023-0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We are interested in the existence of mild solutions for a class of partial integrodifferential inclusions in infinite dimensional Banach spaces. First, we show the existence of mild solutions with the help of a scale of Banach spaces, the theory of resolvent operators, and the fixed point theory for the measure of non-compactness. Moreover, we examine the existence of asymptotically almost periodic solutions for our problem. Finally, an example of the abstract results is provided.\",\"PeriodicalId\":30985,\"journal\":{\"name\":\"Nonautonomous Dynamical Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonautonomous Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/msds-2023-0102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonautonomous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/msds-2023-0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了无限维Banach空间中一类偏积分微分包含的温和解的存在性。首先,我们利用Banach空间的尺度、可解算子理论和非紧性测度的不动点理论证明了温和解的存在性。此外,我们还检验了该问题的渐近概周期解的存在性。最后,给出了一个抽象结果的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotically almost periodic mild solutions for some partial integrodifferential inclusions using scale of Banach spaces
Abstract We are interested in the existence of mild solutions for a class of partial integrodifferential inclusions in infinite dimensional Banach spaces. First, we show the existence of mild solutions with the help of a scale of Banach spaces, the theory of resolvent operators, and the fixed point theory for the measure of non-compactness. Moreover, we examine the existence of asymptotically almost periodic solutions for our problem. Finally, an example of the abstract results is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonautonomous Dynamical Systems
Nonautonomous Dynamical Systems Mathematics-Analysis
CiteScore
2.10
自引率
0.00%
发文量
12
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信