斜底水波变换模拟中的水波速度势

Syawaluddin Hutahaean
{"title":"斜底水波变换模拟中的水波速度势","authors":"Syawaluddin Hutahaean","doi":"10.22161/ijaers.1010.15","DOIUrl":null,"url":null,"abstract":"In this research, we formulated the equation for water wave velocity potential on sloping bottoms. The resulting velocity potential equation for sloping bottoms closely mirrors that of flat bottoms, simplifying its application in sloping terrain scenarios. By exploring velocity potential on sloping bottoms, we derived conservation equations governing wave constant changes as waves transition from deep to shallow waters. These equations encompass the wave number conservation and energy conservation principles. Utilizing these conservation equations, we developed a comprehensive wave transformation model. The one-dimensional model focused on shoaling and breaking phenomena, while the two-dimensional model delved into refraction-diffraction, shoaling, and breaking. The model's framework allows for straightforward extensions, facilitating future advancements in the field.","PeriodicalId":13758,"journal":{"name":"International Journal of Advanced Engineering Research and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water Wave Velocity Potential on Sloping Bottom in Water Wave Transformation Modeling\",\"authors\":\"Syawaluddin Hutahaean\",\"doi\":\"10.22161/ijaers.1010.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we formulated the equation for water wave velocity potential on sloping bottoms. The resulting velocity potential equation for sloping bottoms closely mirrors that of flat bottoms, simplifying its application in sloping terrain scenarios. By exploring velocity potential on sloping bottoms, we derived conservation equations governing wave constant changes as waves transition from deep to shallow waters. These equations encompass the wave number conservation and energy conservation principles. Utilizing these conservation equations, we developed a comprehensive wave transformation model. The one-dimensional model focused on shoaling and breaking phenomena, while the two-dimensional model delved into refraction-diffraction, shoaling, and breaking. The model's framework allows for straightforward extensions, facilitating future advancements in the field.\",\"PeriodicalId\":13758,\"journal\":{\"name\":\"International Journal of Advanced Engineering Research and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Engineering Research and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22161/ijaers.1010.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Engineering Research and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22161/ijaers.1010.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们建立了斜坡底部的水波速度势方程。所得的斜坡底速度势方程与平坦底速度势方程接近,简化了其在斜坡地形中的应用。通过探索斜坡底部的速度势,我们推导了波浪从深水过渡到浅水时波浪常数变化的守恒方程。这些方程包含波数守恒和能量守恒原理。利用这些守恒方程,我们建立了一个综合的波变换模型。一维模型主要研究浅滩和破碎现象,二维模型主要研究折射-衍射、浅滩和破碎现象。该模型的框架允许直接扩展,促进该领域的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water Wave Velocity Potential on Sloping Bottom in Water Wave Transformation Modeling
In this research, we formulated the equation for water wave velocity potential on sloping bottoms. The resulting velocity potential equation for sloping bottoms closely mirrors that of flat bottoms, simplifying its application in sloping terrain scenarios. By exploring velocity potential on sloping bottoms, we derived conservation equations governing wave constant changes as waves transition from deep to shallow waters. These equations encompass the wave number conservation and energy conservation principles. Utilizing these conservation equations, we developed a comprehensive wave transformation model. The one-dimensional model focused on shoaling and breaking phenomena, while the two-dimensional model delved into refraction-diffraction, shoaling, and breaking. The model's framework allows for straightforward extensions, facilitating future advancements in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信