{"title":"不确定延迟神经网络的自适应随机同步","authors":"Enli Wu, Yao Wang, Fei Luo","doi":"10.4236/jamp.2023.119164","DOIUrl":null,"url":null,"abstract":"This paper considers adaptive synchronization of uncertain neural networks with time delays and stochastic perturbation. A general adaptive controller is designed to deal with the difficulties deduced by uncertain parameters and stochastic perturbations, in which the controller is less conservative and optimal since its control gains can be automatically adjusted according to some designed update laws. Based on Lyapunov stability theory and Barbalat lemma, sufficient condition is obtained for synchronization of delayed neural networks by strict mathematical proof. Moreover, the obtained results of this paper are more general than most existing results of certainly neural networks with or without stochastic disturbances. Finally, numerical simulations are presented to substantiate our theoretical results.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Stochastic Synchronization of Uncertain Delayed Neural Networks\",\"authors\":\"Enli Wu, Yao Wang, Fei Luo\",\"doi\":\"10.4236/jamp.2023.119164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers adaptive synchronization of uncertain neural networks with time delays and stochastic perturbation. A general adaptive controller is designed to deal with the difficulties deduced by uncertain parameters and stochastic perturbations, in which the controller is less conservative and optimal since its control gains can be automatically adjusted according to some designed update laws. Based on Lyapunov stability theory and Barbalat lemma, sufficient condition is obtained for synchronization of delayed neural networks by strict mathematical proof. Moreover, the obtained results of this paper are more general than most existing results of certainly neural networks with or without stochastic disturbances. Finally, numerical simulations are presented to substantiate our theoretical results.\",\"PeriodicalId\":15035,\"journal\":{\"name\":\"Journal of Applied Mathematics and Physics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jamp.2023.119164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.119164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Stochastic Synchronization of Uncertain Delayed Neural Networks
This paper considers adaptive synchronization of uncertain neural networks with time delays and stochastic perturbation. A general adaptive controller is designed to deal with the difficulties deduced by uncertain parameters and stochastic perturbations, in which the controller is less conservative and optimal since its control gains can be automatically adjusted according to some designed update laws. Based on Lyapunov stability theory and Barbalat lemma, sufficient condition is obtained for synchronization of delayed neural networks by strict mathematical proof. Moreover, the obtained results of this paper are more general than most existing results of certainly neural networks with or without stochastic disturbances. Finally, numerical simulations are presented to substantiate our theoretical results.